Descripteur


Etendre la recherche sur niveau(x) vers le bas
Cultivation profile: a visual evaluation method of soil structure adapted to the analysis of the impacts of mechanical site preparation in forest plantations / Catherine Collet in European Journal of Forest Research, vol 140 n° 1 (February 2021)
![]()
[article]
Titre : Cultivation profile: a visual evaluation method of soil structure adapted to the analysis of the impacts of mechanical site preparation in forest plantations Type de document : Article/Communication Auteurs : Catherine Collet, Auteur ; Florian Vast, Auteur ; Claudine Richter, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 65 - 76 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] composition des sols
[Termes descripteurs IGN] état du sol
[Termes descripteurs IGN] foresterie
[Termes descripteurs IGN] gestion forestière durable
[Termes descripteurs IGN] plantation forestière
[Termes descripteurs IGN] qualité du sol
[Termes descripteurs IGN] visualisation
[Vedettes matières IGN] SylvicultureRésumé : (auteur) Mechanical site preparation (MSP) is widely used in forestry to improve plantation success. Although it is known to alter soil properties, its direct effects on soil structure have rarely been described. The cultivation profile is a visual soil evaluation (VSE) method developed in agricultural research to analyse the impacts of cultivation practices on soil structure. The objective of the study was to adapt the method to forest plantations in order to analyse the effects of MSP on soil quality. Cultivation profiles were performed in six experimental plantation sites located in Northern France. The method made it possible to compare the impacts on soil structure of three MSP methods. It provided a schematic representation of the soil structural quality and a quantitative estimation of the volume of soil favourable to seedling root growth. It also highlighted unexpected negative effects of some MSP methods on soil structure, such as the creation of small cavities, the presence of compacted soil volumes due to wheel tracks or smeared soil volumes due to tool pass, and the pseudogleisation of soil zones due to changes in water circulation in the soil. The relevance and limitations of VSE methods in the context of forest plantation as well as the expected future development of the methods are discussed. Numéro de notice : A2021-257 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10342-020-01315-2 date de publication en ligne : 12/09/2020 En ligne : https://doi.org/10.1007/s10342-020-01315-2 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97293
in European Journal of Forest Research > vol 140 n° 1 (February 2021) . - pp 65 - 76[article]Web‐based real‐time visualization of large‐scale weather radar data using 3D tiles / Mingyue Lu in Transactions in GIS, Vol 25 n° 1 (February 2021)
![]()
[article]
Titre : Web‐based real‐time visualization of large‐scale weather radar data using 3D tiles Type de document : Article/Communication Auteurs : Mingyue Lu, Auteur ; Xinhao Wang, Auteur ; Xintao Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 25 - 43 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] Chine
[Termes descripteurs IGN] dalle
[Termes descripteurs IGN] données météorologiques
[Termes descripteurs IGN] données radar
[Termes descripteurs IGN] géomatique web
[Termes descripteurs IGN] grande échelle
[Termes descripteurs IGN] temps réel
[Termes descripteurs IGN] visualisation 3D
[Termes descripteurs IGN] Web des données
[Termes descripteurs IGN] WebSIG
[Vedettes matières IGN] GéovisualisationRésumé : (Auteur) Weather radar data play an important role in meteorological analysis and forecasting. In particular, web‐based real‐time 3D visualization will enable and enhance various meteorological applications by avoiding the dissemination of a large amount of data over the internet. Despite that, most existing studies are either limited to 2D or small‐scale data analytics due to methodological limitations. This article proposes a new framework to enable web‐based real‐time 3D visualization of large‐scale weather radar data using 3D tiles and WebGIS technology. The 3D tiles technology is an open specification for online streaming massive heterogeneous 3D geospatial datasets, which is designed to improve rendering performance and reduce memory consumption. First, the weather radar data from multiple single‐radar sites across a large coverage area are organized into a spliced grid data (i.e., weather radar composing data, WRCD). Next, the WRCD is converted into a widely used 3D tile data structure in four steps: data preprocessing, data indexing, data transformation, and 3D tile generation. Last, to validate the feasibility of the proposed strategy, a prototype, namely Meteo3D at https://202.195.237.252:82, is implemented to accommodate the WRCD collected from all the weather radar sites over the whole of China. The results show that near real‐time and accurate visualization for the monitoring and early warning of strong convective weather can be achieved. Numéro de notice : A2021-185 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12638 date de publication en ligne : 19/05/2020 En ligne : https://doi.org/10.1111/tgis.12638 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97147
in Transactions in GIS > Vol 25 n° 1 (February 2021) . - pp 25 - 43[article]
Titre : Remote sensing and GIS Type de document : Guide/Manuel Auteurs : Basudeb Bhatta, Auteur Mention d'édition : 3ème édition Editeur : Oxford, Londres, ... : Oxford University Press Année de publication : 2021 Importance : 752 p. Format : 24 x 18 cm ISBN/ISSN/EAN : 978-0-19-949664-8 Note générale : Bibliographie
additional reading material with Oxford arealLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Télédétection
[Termes descripteurs IGN] acquisition d'images
[Termes descripteurs IGN] airborne multispectral scanner
[Termes descripteurs IGN] analyse spatiale
[Termes descripteurs IGN] Global Navigation Satellite System
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image thermique
[Termes descripteurs IGN] interféromètrie par radar à antenne synthétique
[Termes descripteurs IGN] Lidar
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] modèle numérique de terrain
[Termes descripteurs IGN] modélisation 3D
[Termes descripteurs IGN] orthorectification
[Termes descripteurs IGN] Passive and Active L and S band Sensor
[Termes descripteurs IGN] photographie aérienne
[Termes descripteurs IGN] Satellite Microwave Radiometer
[Termes descripteurs IGN] scène 3D
[Termes descripteurs IGN] stéréoscopie
[Termes descripteurs IGN] système d'information géographique
[Termes descripteurs IGN] traitement d'image
[Termes descripteurs IGN] visualisation 3DIndex. décimale : 35.00 Télédétection - généralités Résumé : (Editeur) Beginning with the history and basic concepts of remote sensing and GIS, the book gives an exhaustive coverage of optical, thermal, and microwave remote sensing, global navigation satellite systems (such as GPS and IRNSS), digital photogrammetry, visual image analysis, digital image processing, spatial and attribute data model, geospatial analysis, and planning, implementation, and management of GIS. It also presents the modern trends of remote sensing and GIS with an illustrated discussion on its numerous applications. Note de contenu : 1. Concept of Remote Sensing
1.1 Introduction
1.2 Distance of Remote Sensing
1.3 Definition of Remote Sensing
1.4 Remote Sensing: Art and/or Science
1.5 Data
1.6 Remote Sensing Process
1.7 Source of Energy
1.8 Interaction with Atmosphere
1.9 Interaction with Target
1.9.1 Hemispherical Absorptance, Transmittance, and Reflectan
1.10 Interaction with the Atmosphere Again
1.11 Recording of Energy by Sensor
1.12 Transmission, Reception, and Processing
1.13 Interpretation and Analysis
1.14 Applications of Remote Sensing
1.15 Advantages of Remote Sensing
1.16 Limitations of Remote Sensing
1.17 Ideal Remote Sensing System
2. Types of Remote Sensing and Sensor Characteristics
2.1 Introduction
2.2 Types of Remote Sensing
2.3 Characteristics of Images
2.4 Orbital Characteristics of Satellite
2.5 Remote Sensing Satellites
2.6 Concept of Swath
2.7 Concept of Nadir
2.8 Sensor Resolutions
2.9 Image Referencing System
2.9.1 Path
2.9.2 Row
2.9.3 Orbital Calendar
3. History of Remote Sensing and Indian Space Program
3.1 Introduction
3.2 The Early Age
3.3 The Middle Age
3.4 The Modern Age or Space Age
3.5 Indian Space Program
4. Photographic Imaging
4.1 Introduction
4.2 Camera Systems
4.3 Types of Camera
4.4 Filter
4.5 Film
4.6 Geometry of Aerial Photography
4.7 Ideal Time and Atmosphere for Aerial Remote Sensing
5. Digital Imaging
5.1 Introduction
5.2 Digital Image
5.3 Sensor
5.4 Imaging by Scanning Technique
5.5 Hyper-spectral Imaging
5.6 Imaging By Non-scanning Technique
5.7 Thermal Remote Sensing
5.8 Other Sensors
6. Microwave Remote Sensing
6.1 Introduction
6.2 Passive Microwave Remote Sensing
6.3 Active Microwave Remote Sensing
6.4 Radar Imaging
6.5 Airborne Versus Space-Borne Radars
6.6 Radar Systems
7. Ground-truth Data and Global Positioning System
7.1 Introduction
7.2 Requirements of Ground-Truth Data
7.3 Instruments for Ground Truthing
7.4 Parameters of Ground Truthing
7.5 Factors of Spectral Measurement
7.6 Global Navigation Satellite System
8. Photogrammetry
8.1 Introduction
8.2 Development of Photogrammetry
8.3 Classification of Photogrammetry
8.4 Photogrammetric Process
8.5 Acquisition of Imagery and its Support Data
8.6 Orientation and Triangulation
8.7 Stereo Model Compilation
8.8 Stereoscopic 3D Viewing
8.9 Stereoscopic Measurement
8.10 DTM/DEM Generation
8.11 Contour Map Generation
8.12 Orthorectification
8.13 3D Feature Extraction
8.14 3D Scene Modelling
8.15 Photogrammetry and LiDAR
8.16 Radargrammetry and Radar Interferometry
8.17 Limitations of Photogrammetry
9. Visual Image Interpretation
9.1 Introduction
9.2 Information Extraction by Human and Computer
9.3 Remote Sensing Data Products
9.4 Border or Marginal Information
9.5 Image Interpretation
9.6 Elements of Visual Image Interpretation
9.7 Interpretation Keys
9.8 Generation of Thematic Maps
9.9 Thermal Image Interpretation
9.10 Radar Image Interpretation
10. Digital Image Processing
10.1 Introduction
10.2 Categorization of Image Processing
10.3 Image Processing Systems
10.4 Digital Image
10.5 Media for Digital Data Recording, Storage, and Distribution
10.6 Data Formats of Digital Image
10.7 Header Information
10.8 Display of Digital Image
10.9 Pre-processing
10.10 Image Enhancement
10.11 Image Transformation
10.12 Image Classification
11. Data Integration, Analysis, and Presentation
11.1 Introduction
11.2 Multi-approach of Remote Sensing
11.3 Integration with Ground Truth and Other Ancillary Data
11.4 Integration of Transformed Data
11.5 Integration with GIS
11.6 Process of Remote Sensing Data Analysis
11.7 The Level of Detail
11.8 Limitations of Remote Sensing Data Analysis
11.9 Presentation
12. Applications of Remote Sensing
12.1 Introduction
12.2 Land Cover and Land Use
12.3 Agriculture
12.4 Forestry
12.5 Geology
12.6 Geomorphology
12.7 Urban Applications
12.8 Hydrology
12.9 Mapping
12.10 Oceans and Coastal Monitoring
12.11 Monitoring of Atmospheric Constituents
PART II Geographic Information Systems and Geospatial Analysis
13. Concept of Geographic Information Systems
13.1 Introduction
13.2 Definitions of GIS
13.3 Key Components of GIS
13.4 GIS-An Integration of Spatial and Attribute Information
13.5 GIS-Three Views of Information System
13.6 GIS and Related Terms
13.7 GIS-A Knowledge Hub
13.8 GIS-A Set of Interrelated Subsystems
13.9 GIS-An Information Infrastructure
13.10 Origin of GIS
14. Functions and Advantages of GIS
14.1 Introduction
14.2 Functions of GIS
14.3 Application Areas of GIS
14.4 Advantages of GIS
14.5 Functional Requirements of GIS
14.6 Limitations of GIS
15. Spatial Data Model
15.1 Introduction
15.2 Spatial, Thematic, and Temporal Dimensions of Geographic Data
15.3 Spatial Entity and Object
15.4 Spatial Data Model
15.5 Raster Data Model
15.6 Vector Data Model
15.7 Raster versus Vector
15.8 Object-Oriented Data Model
15.9 File Formats of Spatial Data
16. Attribute Data Management and Metadata Concept
16.1 Introduction
16.2 Concept of Database and DBMS
16.3 Advantages of DBMS
16.4 Functions of DBMS
16.5 File and Data Access
16.6 Data Models
16.7 Database Models
16.8 Data Models in GIS
16.9 Concept of SQL
16.10 Concept of Metadata
17. Process of GIS
17.1 Introduction
17.2 Data Capture
17.3 Data Sources
17.4 Data Encoding Methods
17.5 Linking of Spatial and Attribute Data
17.6 Organizing Data for Analysis
18. Geospatial Analysis
18.1 Introduction
18.2 Geospatial Data Analysis
18.3 Integration and Modelling of Spatial Data
18.4 Geospatial Data Analysis Methods
18.5 Database Query
18.6 Geospatial Measurements
18.7 Overlay Operations
18.8 Network Analysis
18.9 Surface Analysis
18.10 Geostatistics
18.11 Geovisualization
19. Planning, Implementation, and Management of GIS
19.1 Introduction
19.2 Planning of Project
19.3 Implementation of Project
19.4 Management of Project
19.5 Keys for Successful GIS
19.6 Reasons for Unsuccessful GIS
20. Modern Trends of GIS
20.1 Introduction
20.2 Local to Global Concept in GIS
20.3 Increase in Dimensions in GIS
20.4 Linear to Non-linear Techniques in GIS
20.5 Development in Relation between Geometry and Algebra in GIS
20.6 Development of Common Techniques in GIS
20.7 Integration of GIS and Remote Sensing
20.8 Integration of GIS and Multimedia
20.9 3D GIS
20.9.1 Virtual Reality in GIS
20.10 Integration of 3D GIS and Web GIS
20.11 4D GIS and Real-time GIS
20.12 Mobile GIS
20.12.1 Mobile mapping
20.13 Collaborative GIS (CGIS)
21. Change Detection and Geosimulation
21.1 Visual change detection
21.2 Thresholding
21.3 Image difference
21.4 Image regression
21.5 Image ratioing
21.6 Vegetation index differencing
21.7 Principal component differencing
21.8 Multi-temporal image stock classification
21.9 Post classification comparison
21.10 Change vector analysis
21.12 Cellular automata simulation
21.13 Multi-agent simulation
21.14 ANN learning in simulation
Appendix A - Concept of Map, Coordinate System, and Projection
Appendix B - Concept on Mathematical TopicsNuméro de notice : 26518 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE/POSITIONNEMENT Nature : Manuel de cours DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97342 Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 26518-01 35.00 Livre Centre de documentation Télédétection Disponible Topographic connection method for automated mapping of landslide inventories, study case: semi urban sub-basin from Monterrey, Northeast of México / Nelly L. Ramirez Serrato in Geocarto international, vol 35 n° 15 ([01/11/2020])
![]()
[article]
Titre : Topographic connection method for automated mapping of landslide inventories, study case: semi urban sub-basin from Monterrey, Northeast of México Type de document : Article/Communication Auteurs : Nelly L. Ramirez Serrato, Auteur ; Fabiola D. Yepez-Rincon, Auteur ; Adrian L. Ferrino Fierro, Auteur Année de publication : 2020 Article en page(s) : pp 1706 - 1721 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] chaîne de traitement
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] inventaire
[Termes descripteurs IGN] Mexique
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] visualisation 3DRésumé : (auteur) By nature, slopes are conformed by forces that are in constant balance. Altering this natural balance causes the sliding of soil towards lower zones. Landslides are a constant danger that compromises the general welfare of society. Landslides mapping is especially important for urban areas or development plans. The innovative aspect of this study is the creation of the Topographic Connection Method (TPCM) to automatically map landslides using two types of landslides 1) falls and 2) flows. TPCM cartography results were compared to a previously proven method (Contour Connection Method), as well as to the manual inventory method. Each method was run four times to locate changes through time by using satellite imagery, digital elevations models and 3D relief visualizations with data covering a period from 2012 to 2017. Results showed both falls and flows with all three methods and demonstrated that TPCM can improve mapping accuracy by up to 14%. Numéro de notice : A2020-659 Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1581269 date de publication en ligne : 01/04/2019 En ligne : https://doi.org/10.1080/10106049.2019.1581269 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96132
in Geocarto international > vol 35 n° 15 [01/11/2020] . - pp 1706 - 1721[article]CityJSON in QGIS: Development of an open‐source plugin / Stelios Vitalis in Transactions in GIS, Vol 24 n° 5 (October 2020)
![]()
[article]
Titre : CityJSON in QGIS: Development of an open‐source plugin Type de document : Article/Communication Auteurs : Stelios Vitalis, Auteur ; Ken Arroyo Ohori, Auteur ; Jantien Stoter, Auteur Année de publication : 2020 Article en page(s) : pp 1147-1164 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes d'information géographique
[Termes descripteurs IGN] CityGML
[Termes descripteurs IGN] édition en libre accès
[Termes descripteurs IGN] format JSON
[Termes descripteurs IGN] implémentation (informatique)
[Termes descripteurs IGN] modèle 3D de l'espace urbain
[Termes descripteurs IGN] module d'extension
[Termes descripteurs IGN] QGIS
[Termes descripteurs IGN] visualisation 3DRésumé : (Auteur) When QGIS 3.0 was released in 2018, it added support for 3D visualisation. At the same time, CityJSON has been developing as an easy‐to‐use JavaScript Object Notation (JSON) encoding for 3D city models using the CityGML 2.0 data model. Together, this opened the possibility to support semantic 3D city models in the popular open‐source GIS software for the first time. In order to add support for 3D city models in QGIS, we have developed a plugin that enables CityJSON datasets to be loaded. The plugin parses a CityJSON file and analyses its tree structure to identify all city objects. Then, the geometry and attributes of every city object are transformed into QGIS features and divided into layers according to user preferences. CityJSON parsing was proven to be straightforward and consistent when tested against several open datasets. One of the biggest challenges we faced, though, was mapping CityJSON’s hierarchical data structure to the relational model of QGIS. We undertook this issue by providing various methods on how geometries from the model are loaded as QGIS features. We intend to use the plugin for educational purposes in our university and we believe it can be proven a worthy tool for researchers and practitioners. Numéro de notice : A2020-498 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12657 date de publication en ligne : 24/06/2020 En ligne : https://doi.org/10.1111/tgis.12657 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96198
in Transactions in GIS > Vol 24 n° 5 (October 2020) . - pp 1147-1164[article]3D reconstruction of internal wood decay using photogrammetry and sonic tomography / Junjie Zhang in Photogrammetric record, vol 35 n° 171 (September 2020)
PermalinkGeometric distortion of historical images for 3D visualization / Evelyn Paiz-Reyes in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
PermalinkSpatio-temporal mobility and Twitter: 3D visualisation of mobility flows / Joaquín Osorio Arjona in Journal of maps, vol 16 n° 1 ([02/01/2020])
PermalinkApplication of machine learning techniques for evidential 3D perception, in the context of autonomous driving / Edouard Capellier (2020)
PermalinkPermalinkPermalinkNumérisation, restitution et visualisation en 3D de sites patrimoniaux / Jonathan Chemla in XYZ, n° 161 (décembre 2019)
PermalinkPermalinkReprésentation des éléments juridiques dans une maquette BIM / Bamba Ngom in Géomatique expert, n° 128 (juin - juillet 2019)
PermalinkAn artificial bee colony-based algorithm to automatically create colour schemes for geovisualizations / Mingguang Wu in Cartographic journal (the), Vol 56 n° 2 (May 2019)
PermalinkiTowns, le nouveau moteur de visualisation 3D de données géospatiales du Géoportail / Mirela Konini in Responsabilité et environnement, n° 94 (Avril 2019)
![]()
PermalinkPermalinkPermalink3D WebGIS : from visualization to analysis. An efficient browser-based 3D line-of-sight analysis / Michael Auer in ISPRS International journal of geo-information, vol 7 n° 7 (July 2018)
PermalinkLocal curvature entropy-based 3D terrain representation using a comprehensive Quadtree / Giyu Chen in ISPRS Journal of photogrammetry and remote sensing, vol 139 (May 2018)
Permalink3D visualization of trees based on a sphere-board model / Jiangfeng She in ISPRS International journal of geo-information, vol 7 n° 2 (February 2018)
PermalinkPermalinkPermalinkUnderground visualization: Web-app, virtual reality, ex situ and in situ augmented reality / Alexandre Devaux (2018)
PermalinkSNCF Réseau : de l'acquisition 3D à la diffusion de la donnée / Mathieu Regul in XYZ, n° 153 (décembre 2017 - février 2018)
PermalinkAn effective spherical panoramic LoD model for a mobile street view service / Xianxiong Liu in Transactions in GIS, vol 21 n° 5 (October 2017)
PermalinkUsing NoSQL databases in the 3D cadastre domain / Nenad Višnjevac in Geodetski vestnik, vol 61 n° 3 (September - November 2017)
PermalinkDernières nouvelles de QGIS ... et d'autres / Vincent Picavet in Géomatique expert, n° 117 (juillet - août 2017)
PermalinkDomains of uncertainty visualization research: a visual summary approach / Jennifer Smith Mason in Cartography and Geographic Information Science, Vol 44 n° 4 (July 2017)
PermalinkHow users perceive transparency in the 3D visualization of cadastre : testing its usability in an online questionnaire / Chen Wang in Geoinformatica [en ligne], vol 21 n° 3 (July - September 2017)
PermalinkInteractive shearing for terrain visualization : an expert study / Jonas Buddeberg in Geoinformatica [en ligne], vol 21 n° 3 (July - September 2017)
PermalinkPermalinkAssessment of urban energy performance through integration of BIM and GIS for smart city planning / Shinji Yamamura in Procedia Engineering, vol 180 ([01/06/2017])
PermalinkKnowledge-based data enrichment for HBIM: Exploring high-quality models using the semantic-web / Ramona Quattrini in Journal of Cultural Heritage, vol ([01/06/2017])
PermalinkSpatial query based virtual reality GIS analysis platform / Weixi Wang in Neurocomputing, vol (2017)
PermalinkExtending a BIM-based data model to support 3D digital management of complex ownership spaces / Behnam Atazadeh in International journal of geographical information science IJGIS, vol 31 n° 3-4 (March-April 2017)
PermalinkAerial lidar point cloud voxelization with its 3D ground filtering application / Liying Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 2 (February 2017)
PermalinkEtude et méthodes d'intégration et d'interaction de données 3D complexes type "nuages de points" vers un web SIG / Victor Lambert (2017)
PermalinkPermalinkPermalinkAn inquiry on contrast enhancement methods for satellite images / Jose-Luis Lisani in IEEE Transactions on geoscience and remote sensing, vol 54 n° 12 (December 2016)
PermalinkSystematic effects in laser scanning and visualization by confidence regions / Karl Rudolf Koch in Journal of applied geodesy, vol 10 n° 4 (December 2016)
PermalinkRelevé topographique des environnements urbains [article originellement paru dans le numéro mai/juin 2016 de la revue italienne GEOMedia] / Luigi Colombo in Géomatique expert, n° 113 (novembre - décembre 2016)
PermalinkPermalinkLes troubles de la perception des couleurs en cartographie / Frédéric Miotto in Carto, le monde en cartes, n° 37 (septembre - octobre 2016)
PermalinkComputation and visualisation of the accuracy of old maps using differential distortion analysis / Manuel Claeys Boùùaert in International journal of geographical information science IJGIS, vol 30 n° 7- 8 (July - August 2016)
PermalinkJournées ESRI transports et infrastructure / Anonyme in Géomatique expert, n° 111 (juillet- août 2016)
Permalinkvol 117 - July 2016 - Multi-dimensional modeling, analysis and visualization (Bulletin de ISPRS Journal of photogrammetry and remote sensing) / Eric Guilbert
PermalinkA web-based 3D visualisation and assessment system for urban precinct scenario modelling / Roman Trubka in ISPRS Journal of photogrammetry and remote sensing, vol 117 (July 2016)
PermalinkLe 12ème Forum de la topographie : topographie et BIM / Tania Landes in XYZ, n° 147 (juin - août 2016)
Permalink