Descripteur
Documents disponibles dans cette catégorie (545)


Etendre la recherche sur niveau(x) vers le bas
Spatio-temporal mobility and Twitter: 3D visualisation of mobility flows / Joaquín Osorio Arjona in Journal of maps, vol 16 n° 1 ([02/01/2020])
![]()
[article]
Titre : Spatio-temporal mobility and Twitter: 3D visualisation of mobility flows Type de document : Article/Communication Auteurs : Joaquín Osorio Arjona, Auteur ; Juan Carlos García Palomares, Auteur Année de publication : 2020 Article en page(s) : pp 153 - 160 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse spatio-temporelle
[Termes IGN] base de données localisées
[Termes IGN] données localisées des bénévoles
[Termes IGN] espace-temps
[Termes IGN] interface de programmation
[Termes IGN] Madrid (Espagne)
[Termes IGN] migration pendulaire
[Termes IGN] mobilité urbaine
[Termes IGN] réseau social
[Termes IGN] système d'information géographique
[Termes IGN] Time-geography
[Termes IGN] Twitter
[Termes IGN] visualisation 3D
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Recent progress in computation and the spatio-temporal richness of data obtained from new sources have invigorated Time Geography. It is now possible to visualise and represent movements of people in a dual spatial–temporal dimension. In this work, we use geo-located data from the social media platform Twitter to show the value of new data sources for Time Geography. The methodology consists of visualising space–time paths in 2D and 3D in four study zones, with different land-use profiles, based on tweets compiled over the course of two years. The results provide a view of behaviours occurring in the areas of study throughout the day, with complementary data to show the population's main activity at different times. Numéro de notice : A2020-645 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/17445647.2020.1778549 Date de publication en ligne : 18/06/2020 En ligne : https://doi.org/10.1080/17445647.2020.1778549 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96071
in Journal of maps > vol 16 n° 1 [02/01/2020] . - pp 153 - 160[article]Application of machine learning techniques for evidential 3D perception, in the context of autonomous driving / Edouard Capellier (2020)
![]()
Titre : Application of machine learning techniques for evidential 3D perception, in the context of autonomous driving Type de document : Thèse/HDR Auteurs : Edouard Capellier, Auteur ; Véronique Berge-Cherfaoui, Directeur de thèse ; Franck Davoine, Directeur de thèse Editeur : Compiègne : Université de Technologie de Compiègne UTC Année de publication : 2020 Importance : 123 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse présentée pour l'obtention du grade de Docteur de l'UTC, Robotique et Sciences et Technologies de l'Information et des SystèmesLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] carte routière
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] image RVB
[Termes IGN] intelligence artificielle
[Termes IGN] navigation autonome
[Termes IGN] segmentation sémantique
[Termes IGN] théorie de Dempster-Shafer
[Termes IGN] vision par ordinateur
[Termes IGN] visualisation 3DRésumé : (auteur) The perception task is paramount for self-driving vehicles. Being able to extract accurate and significant information from sensor inputs is mandatory, so as to ensure a safe operation. The recent progresses of machine-learning techniques revolutionize the way perception modules, for autonomous driving, are being developed and evaluated, while allowing to vastly overpass previous state-of-the-art results in practically all the perception-related tasks. Therefore, efficient and accurate ways to model the knowledge that is used by a self-driving vehicle is mandatory. Indeed, self-awareness, and appropriate modeling of the doubts, are desirable properties for such system. In this work, we assumed that the evidence theory was an efficient way to finely model the information extracted from deep neural networks. Based on those intuitions, we developed three perception modules that rely on machine learning, and the evidence theory. Those modules were tested on real-life data. First, we proposed an asynchronous evidential occupancy grid mapping algorithm, that fused semantic segmentation results obtained from RGB images, and LIDAR scans. Its asynchronous nature makes it particularly efficient to handle sensor failures. The semantic information is used to define decay rates at the cell level, and handle potentially moving object. Then, we proposed an evidential classifier of LIDAR objects. This system is trained to distinguish between vehicles and vulnerable road users, that are detected via a clustering algorithm. The classifier can be reinterpreted as performing a fusion of simple evidential mass functions. Moreover, a simple statistical filtering scheme can be used to filter outputs of the classifier that are incoherent with regards to the training set, so as to allow the classifier to work in open world, and reject other types of objects. Finally, we investigated the possibility to perform road detection in LIDAR scans, from deep neural networks. We proposed two architectures that are inspired by recent state-of-the-art LIDAR processing systems. A training dataset was acquired and labeled in a semi-automatic fashion from road maps. A set of fused neural networks reaches satisfactory results, which allowed us to use them in an evidential road mapping and object detection algorithm, that manages to run at 10 Hz Note de contenu : 1- Introduction
2- Machine learning for perception in autonomous driving
3- The evidence theory, and its applications in autonomous driving
4- A synchronous evidential grid mapping from RGB images and LIDAR scans
5- Evidential LIDAR object classification
6- Road detection in LIDAR scans
7- Application of RoadSeg:evidential road surface mapping
8- ConclusionNuméro de notice : 25895 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Robotique et Sciences et Technologies de l'Information et des Systèmes : UTC : 2020 Organisme de stage : Laboratoire Heudiasyc nature-HAL : Thèse DOI : sans En ligne : https://hal.science/tel-02897810v1 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96013
Titre : Co-visualization of air temperature and urban data for visual exploration Type de document : Article/Communication Auteurs : Jacques Gautier , Auteur ; Mathieu Brédif
, Auteur ; Sidonie Christophe
, Auteur
Editeur : New-York : IEEE Computer society Année de publication : 2020 Projets : URCLIM / Masson, Valéry Conférence : IEEE VIS 2020, (VAST, INFOVIS, SCIVIS), premier forum for advances in visualization and visual analytics 25/10/2020 30/10/2020 en ligne vers VIS.org Importance : 5 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse géovisuelle
[Termes IGN] distribution spatiale
[Termes IGN] exploration de données géographiques
[Termes IGN] ilot thermique urbain
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] morphologie urbaine
[Termes IGN] rendu (géovisualisation)
[Termes IGN] représentation graphique
[Termes IGN] température de l'air
[Termes IGN] visualisation 3D
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Urban climate data remain complex to analyze regarding their spatial distribution. The co-visualization of simulated air temperature into urban models could help experts to analyze horizontal and vertical spatial distributions. We design a co-visualization framework enabling simulated air temperature data exploration, based on the graphic representation of three types of geometric proxies, and their co-visualization with a 3D urban model with various possible rendering styles. Through this framework, we aim at allowing meteorological researchers to visually analyze and interpret the relationships between simulated air temperature data and urban morphology. Numéro de notice : C2020-005 Affiliation des auteurs : UGE-LASTIG (2020- ) Autre URL associée : VIS 2020 Thématique : GEOMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/VIS47514.2020.00021 Date de publication en ligne : 01/02/2021 En ligne : https://doi.org/10.1109/VIS47514.2020.00021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96161 Documents numériques
en open access
Co-visualization... - pdf auteur -Adobe Acrobat PDF
Titre : Multi-scale point cloud analysis Titre original : Analyse multi-échelle de nuage de points Type de document : Thèse/HDR Auteurs : Thibault Lejemble, Auteur ; Loïc Barthe, Directeur de thèse Editeur : Toulouse : Université de Toulouse 3 Paul Sabatier Année de publication : 2020 Importance : 142 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse en vue du Doctorat de l'Université de Toulouse en Informatique et TélécommunicationsLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse multiéchelle
[Termes IGN] analyse multirésolution
[Termes IGN] anisotropie
[Termes IGN] approche hiérarchique
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction automatique
[Termes IGN] géométrie différentielle
[Termes IGN] graphe
[Termes IGN] reconnaissance de formes
[Termes IGN] segmentation en plan
[Termes IGN] segmentation en régions
[Termes IGN] semis de points
[Termes IGN] visualisation 3DRésumé : (auteur) 3D acquisition techniques like photogrammetry and laser scanning are commonly used in numerous fields such as reverse engineering, archeology, robotics and urban planning. The main objective is to get virtual versions of real objects in order to visualize, analyze and process them easily. Acquisition techniques become more and more powerful and affordable which creates important needs to process efficiently the resulting various and massive3D data. Data are usually obtained in the form of unstructured 3D point cloud sampling the scanned surface. Traditional signal processing methods cannot be directly applied due to the lack of spatial parametrization. Points are only represented by their 3D coordinates without any particular order. This thesis focuses on the notion of scale of analysis defined by the size of the neighborhood used to locally characterize the point-sampled surface. The analysis at different scales enables to consider various shapes which increases the analysis pertinence and the robustness to acquired data imperfections. We first present some theoretical and practical results on curvature estimation adapted to a multi-scale and multi-resolution representation of point clouds. They are used to develop multi-scale algorithms for the recognition of planar and anisotropic shapes such as cylinder sand feature curves. Finally, we propose to compute a global 2D parametrization of the underlying surface directly from the 3D unstructured point cloud. Note de contenu : Introduction
1- Multi-scale differential analysis of point clouds
2- Plane detection using persistence analysis of graph
3- An isotropic features detection using curvature lines
4- Point cloud parametrization
ConclusionNuméro de notice : 28583 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique et Télécommunications : Toulouse 3 : 2020 Organisme de stage : Institut de recherche en informatique de Toulouse En ligne : https://tel.archives-ouvertes.fr/tel-03170824/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97923
Titre : Visual analysis of inconsistencies in hydraulic simulation data Type de document : Article/Communication Auteurs : Octave Perrin, Auteur ; Sidonie Christophe , Auteur ; Florence Jacquinod
, Auteur ; Olivier Payrastre, Auteur
Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2020 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B4-2020 Projets : UrbaRiskLab / November, Valérie Conférence : ISPRS 2020, Commission 4, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Archives Commission 4 Importance : pp 795 - 801 Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse géovisuelle
[Termes IGN] cohérence des données
[Termes IGN] couleur à l'écran
[Termes IGN] données hydrographiques
[Termes IGN] inondation
[Termes IGN] modèle de simulation
[Termes IGN] QGIS
[Termes IGN] risque naturel
[Termes IGN] style cartographique
[Termes IGN] zone inondable
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) We present our contribution to the geovisualization and visual analysis of hydraulic simulation data, based on an interdisciplinary research work undertaken by researchers in geographic information sciences and in hydraulics. The positive feedback loop between researchers favored the proposal of visualization tools enabling visual reasoning on hydraulic simulated data so as to infer knowledge on the simulation model. We interactively explore and design 2D multi-scale styles to render hydraulic simulated data, in order to support the identification over large simulation domains of possible local inconsistencies related to input simulation data, simulation parameters or simulation workflow. Models have been implemented into QGIS and are reusable for other input data and territories. Numéro de notice : C2020-012 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B4-2020-795-2020 Date de publication en ligne : 25/08/2020 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-795-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95532 PermalinkNumérisation, restitution et visualisation en 3D de sites patrimoniaux / Jonathan Chemla in XYZ, n° 161 (décembre 2019)
PermalinkPermalinkReprésentation des éléments juridiques dans une maquette BIM / Bamba Ngom in Géomatique expert, n° 128 (juin - juillet 2019)
PermalinkAn artificial bee colony-based algorithm to automatically create colour schemes for geovisualizations / Mingguang Wu in Cartographic journal (the), Vol 56 n° 2 (May 2019)
PermalinkiTowns, le nouveau moteur de visualisation 3D de données géospatiales du Géoportail / Mirela Konini in Responsabilité et environnement, n° 94 (Avril 2019)
![]()
PermalinkPermalinkUtilizing a discrete global grid system for handling point clouds with varying locations, times, and levels of detail / Neeraj Sirdeshmukh in Cartographica, vol 54 n° 1 (Spring 2019)
PermalinkPermalinkPermalink