Descripteur



Etendre la recherche sur niveau(x) vers le bas
Coastal water remote sensing from sentinel-2 satellite data using physical, statistical, and neural network retrieval approach / Frank S. Marzano in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
![]()
[article]
Titre : Coastal water remote sensing from sentinel-2 satellite data using physical, statistical, and neural network retrieval approach Type de document : Article/Communication Auteurs : Frank S. Marzano, Auteur ; Michele Iacobelli, Auteur ; Massimo Orlandi, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 915 - 928 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Adriatique, mer
[Termes descripteurs IGN] bathymétrie
[Termes descripteurs IGN] chlorophylle
[Termes descripteurs IGN] correction atmosphérique
[Termes descripteurs IGN] couleur de l'océan
[Termes descripteurs IGN] eaux côtières
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] incertitude spectrale
[Termes descripteurs IGN] matière organique
[Termes descripteurs IGN] Méditerranée, mer
[Termes descripteurs IGN] réseau neuronal artificielRésumé : (auteur) Recent optical remote sensing satellite missions, such as Sentinel-2 with the MultiSpectral Imager (MSI) onboard, allow the estimation of coastal water key parameters with very high spatial resolutions (down to 10 m). In this article, multiple approaches are proposed for retrieving chlorophyll-a (Chl-a) and total suspended matter (TSM) along the Adriatic and Tyrrhenian coasts in Italy, using both empirical and model-based frameworks to design regressive and neural network (NN) estimation methods. The latter proves to be more accurate on a regional scale, where standard ocean color physical models exhibit high uncertainty in their local parameterization due to the complex spectral characteristics of the observed scene. Retrieval results are encouraging for Chl-a with a coefficient of determination R2 up to 0.72 with a root-mean-square error (RMSE) of 0.33 mg m−3 , using an empirical NN. The TSM algorithms exhibit higher uncertainty, mainly due to scarcity of in situ measurements and model parameterizations, with R2=0.52 and RMSE = 1.95 g/m 3 using NNs. The bio-optical model, used for the development of model-based algorithms, shows some inadequacies in representing the inherent and apparent optical properties for the case study areas, especially considering the different spectral features between the oligotrophic Tyrrhenian Sea and the eutrophic Adriatic Sea. This study confirms the potential of Sentinel-2 MSI products for coastal water monitoring, but it also highlights key issues to be further tackled such as the atmospheric correction impact, the need of reliable in situ measurements, and possible bathymetry effects near the shores. Numéro de notice : A2021-110 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2980941 date de publication en ligne : 09/12/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2980941 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96912
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 915 - 928[article]Comparing the performance of turbulent kinetic energy and K-profile parameterization vertical parameterization schemes over the tropical indian ocean / Lokesh Kumar Pandey in Marine geodesy, vol 44 n° 1 (January 2021)
![]()
[article]
Titre : Comparing the performance of turbulent kinetic energy and K-profile parameterization vertical parameterization schemes over the tropical indian ocean Type de document : Article/Communication Auteurs : Lokesh Kumar Pandey, Auteur ; Suneet Dwivedi, Auteur Année de publication : 2021 Article en page(s) : pp 42 - 69 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Océanographie
[Termes descripteurs IGN] Bengale, golfe du
[Termes descripteurs IGN] énergie cinétique
[Termes descripteurs IGN] Indien (océan)
[Termes descripteurs IGN] modélisation spatiale
[Termes descripteurs IGN] mousson
[Termes descripteurs IGN] salinité
[Termes descripteurs IGN] température de surface de la merRésumé : (Auteur) The performance of vertical parameterization schemes, namely, turbulent kinetic energy (TKE) and K-profile parameterization (KPP), is evaluated over the domain [30E-120E; 20S-30N] in the Indian Ocean using the Nucleus for European Modeling of the Ocean (NEMO) regional model. The surface and sub-surface hydrography and mixed layer depth (MLD) of the simulations using TKE and KPP schemes have been compared. The KPP scheme produces higher bias (∼0.5 °C) of sea surface temperature (SST) in monsoon and post-monsoon seasons, which reduces on using the TKE scheme. The maximum surface salinity difference (0.45 psu) between TKE and KPP simulations is obtained over the head Bay of Bengal (BoB) in the post-monsoon months. The KPP scheme also overestimates MLD of the region. Barring highly convective regions as well as regions marked with very low and rapidly changing salinity, the TKE scheme performs better than KPP scheme in simulating the hydrography and MLD of the region. The differences between TKE and KPP simulations in the vertical stability and mixing are studied using buoyancy frequency, vertical shear of horizontal currents and energy required for mixing as quantifiers. The mixed layer heat budget analysis explains seasonal variability of SST and differences in vertical mixing parameterizations. Numéro de notice : A2021-059 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01490419.2020.1835758 date de publication en ligne : 29/10/2020 En ligne : https://doi.org/10.1080/01490419.2020.1835758 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96849
in Marine geodesy > vol 44 n° 1 (January 2021) . - pp 42 - 69[article]Super-resolution of VIIRS-measured ocean color products using deep convolutional neural network / Xiaoming Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
![]()
[article]
Titre : Super-resolution of VIIRS-measured ocean color products using deep convolutional neural network Type de document : Article/Communication Auteurs : Xiaoming Liu, Auteur ; Menghua Wang, Auteur Année de publication : 2021 Article en page(s) : pp 114 - 127 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse spectrale
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] bande infrarouge
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] couleur de l'océan
[Termes descripteurs IGN] image infrarouge couleur
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image NPP-VIIRS
[Termes descripteurs IGN] rayonnementRésumé : (auteur) Since its launch in October 2011, the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite has provided high quality global ocean color products, which include normalized water-leaving radiance spectra nLw ( λ ) of six moderate (M) bands (M1–M6) at the wavelengths of 410, 443, 486, 551, 671, and 745 nm with a spatial resolution of 750-m, and one imagery (I) band at a wavelength of 638 nm with a spatial resolution of 375-m. Because the high-resolution I-band measurements are highly correlated spectrally to those of M-band data, it can be used as a guidance to super-resolve the M-band nLw ( λ ) imagery from 750- to 375-m spatial resolution. Super-resolving images from coarse spatial resolution to finer ones have been a field of very active research in recent years. However, no previous studies have been applied to satellite ocean color remote sensing, in particular, for VIIRS ocean color applications. In this study, we employ the deep convolutional neural network (CNN) technique to glean the high-frequency content from the VIIRS I1 band and transfer to super-resolved M-band ocean color images. The network is trained to super-resolve each of the VIIRS six M-bands nLw ( λ ) separately. In our results, the super-resolved (375-m) nLw ( λ ) images are much sharper and show finer spatial structures than the original images. Quantitative evaluations show that biases between the super-resolved and original nLw ( λ ) images are small for all bands. However, errors in the super-resolved nLw ( λ ) images are wavelength-dependent. The smallest error is found in the super-resolved nLw (551) and nLw (671) images, and error increases as the wavelength decreases from 486 to 410 nm. The results show that the networks have the capability to capture the correlations of the M-band and the I1 band images to super-resolved M-band images. Numéro de notice : A2021-031 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2992912 date de publication en ligne : 20/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2992912 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96726
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 114 - 127[article]The construction of sound speed field based on back propagation neural network in the global ocean / Junting Wang in Marine geodesy, vol 43 n° 6 (November 2020)
![]()
[article]
Titre : The construction of sound speed field based on back propagation neural network in the global ocean Type de document : Article/Communication Auteurs : Junting Wang, Auteur ; Tianhe Xu, Auteur ; Wenfeng Nie, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 621 - 642 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes descripteurs IGN] fonction orthogonale
[Termes descripteurs IGN] interpolation spatiale
[Termes descripteurs IGN] milieu marin
[Termes descripteurs IGN] onde acoustique
[Termes descripteurs IGN] propagation du son
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] salinité
[Termes descripteurs IGN] sondage acoustique
[Termes descripteurs IGN] température
[Termes descripteurs IGN] vitesseRésumé : (auteur) The sound speed is a key parameter that affects the underwater acoustic positioning and navigation. Aiming at the high-precision construction of sound speed field in the complex marine environment, this paper proposes a sound speed field model based on back propagation neural network (BPNN) by considering the correlation of learning samples. The method firstly uses measured ocean parameters to construct the temperature and salinity field. Then the spatial position, the temperature and the salinity information are used to construct the global ocean sound speed field based on the back propagation neural network algorithm. During the processing, the learning samples of back propagation neural network are selected based on the correlation between sound speed and distance. The proposed algorithm is validated by the global Argo data as well as compared with the spatial interpolation and the empirical orthogonal function (EOF) algorithm. The results demonstrate that the average root mean squares of the BPNN considering the correlation of learning samples is 0.352 m/s compared to the 1.527 m/s of EOF construction and the 2.661 m/s of spatial interpolation, with an improvement of 76.9% and 86.8%. Therefore, the proposed algorithm can improve the construction accuracy of sound speed field in the complex marine environment. Numéro de notice : A2020-694 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01490419.2020.1815912 date de publication en ligne : 14/09/2020 En ligne : https://doi.org/10.1080/01490419.2020.1815912 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96242
in Marine geodesy > vol 43 n° 6 (November 2020) . - pp 621 - 642[article]Using Ranked Probability Skill Score (RPSS) as Nonlocal Root-Mean-Square Errors (RMSEs) for Mitigating Wet Bias of Soil Moisture Ocean Salinity (SMOS) Soil Moisture / Ju Hyoung Lee in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 2 (February 2020)
![]()
[article]
Titre : Using Ranked Probability Skill Score (RPSS) as Nonlocal Root-Mean-Square Errors (RMSEs) for Mitigating Wet Bias of Soil Moisture Ocean Salinity (SMOS) Soil Moisture Type de document : Article/Communication Auteurs : Ju Hyoung Lee, Auteur Année de publication : 2020 Article en page(s) : pp 91 - 98 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Afrique occidentale
[Termes descripteurs IGN] données multitemporelles
[Termes descripteurs IGN] erreur moyenne quadratique
[Termes descripteurs IGN] erreur systématique
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] image SMOS
[Termes descripteurs IGN] salinitéRésumé : (Auteur) To mitigate instantaneously evolving biases in satellite retrievals, a stochastic approach is applied over West Africa. This stochastic approach independently self-corrects Soil Moisture Ocean Salinity (SMOS) wet biases, unlike the cumulative density function (CDF) matching that rescales satellite retrievals with respect to several years of reference data. Ranked probability skill score (RPSS) is used as nonlocal root-mean-square errors (RMSEs) to assess stochastic retrievals. Stochastic method successfully decreases RMSEs from 0.146 m3/m3 to 0.056 m3/m3 in the Republic of Benin and from 0.080 m3/m3 to 0.038 m3/m3 in Niger, while the CDF matching method exacerbates the original SMOS biases up to 0.141 m3/m3 in Niger, and 0.120 m3/m3 in Benin. Unlike the CDF matching or European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA))–interim soil moisture, only a stochastic retrieval responds to Tropical Rainfall Measuring Mission rainfall. Based on the effects of bias correction, RPSS is suggested as a nonlocal verification without needing local measurements. Numéro de notice : A2020-126 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.2.91 date de publication en ligne : 01/02/2020 En ligne : https://doi.org/10.14358/PERS.86.2.91 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94772
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 2 (February 2020) . - pp 91 - 98[article]On the assimilation of absolute geodetic dynamic topography in a global ocean model: impact on the deep ocean state / Alexey Androsov in Journal of geodesy, vol 93 n° 2 (February 2019)
PermalinkTélédétection multispectrale et hyperspectrale des eaux littorales turbides / Morgane Larnicol (2018)
PermalinkImproved atmospheric correction and chlorophyll-a remote sensing models for turbid waters in a dusty environment / Maryam R. Al Shehhi in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)
PermalinkAtmospheric correction over coastal waters using multilayer neural networks / Yongzhen Fan in Remote sensing of environment, vol 199 (15 September 2017)
PermalinkTélédétection pour l'observation des surfaces continentales, Volume 4. Observation des surfaces continentales par télédétection 2 / Nicolas Baghdadi (2017)
PermalinkTélédétection pour l'observation des surfaces continentales, Volume 5. Observation des surfaces continentales par télédétection 3 / Nicolas Baghdadi (2017)
PermalinkModelling electrical conductivity of soil from backscattering coefficient of microwave remotely sensed data using artificial neural network / Walaiporn Phonphan in Geocarto international, vol 29 n° 7 - 8 (November - December 2014)
PermalinkMapping a priori defined plant associations using remotely sensed vegetation characteristics / Hans D. Rölofsen in Remote sensing of environment, vol 140 (January 2014)
PermalinkPermalinkThe soil moisture and ocean salinity (SMOS) mission: first results and achievements / Yann H. Kerr in Revue Française de Photogrammétrie et de Télédétection, n° 200 (Novembre 2012)
Permalink