Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > botanique > formation végétale > forêt > mangrove
mangrove |
Documents disponibles dans cette catégorie (61)



Etendre la recherche sur niveau(x) vers le bas
GIS models for vulnerability of coastal erosion assessment in a tropical protected area / Luís Russo Vieira in ISPRS International journal of geo-information, vol 10 n° 9 (September 2021)
![]()
[article]
Titre : GIS models for vulnerability of coastal erosion assessment in a tropical protected area Type de document : Article/Communication Auteurs : Luís Russo Vieira, Auteur ; José Guilherme Vieira, Auteur ; Isabel Marques da silva, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 598 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] Brésil
[Termes IGN] érosion côtière
[Termes IGN] géoréférencement
[Termes IGN] mangrove
[Termes IGN] modèle de simulation
[Termes IGN] système d'information géographique
[Termes IGN] vulnérabilité
[Termes IGN] zone intertropicaleRésumé : (auteur) Coastal erosion is considered a major worldwide challenge. The vulnerability assessment of coastal areas, in relation to climate change, is a key topic of worldwide increasing interest. The integration of methodologies supported by Remote Sensing, Geographical Information Systems (GIS) and in situ monitoring has allowed a viable identification of vulnerable areas to erosion. In the present study, a model was proposed to the assessment of the estuarine system of Cananéia-Iguape (Brazil), by applying the evaluation and prediction of vulnerability models for the conservation and preservation of mangroves. Approximately 1221 Km2 were classified, with 16% of the total presenting high and very high vulnerability to erosion. Other relevant aspects, were the identification and georeferencing sites that showed strong evidence of erosion and, thus, having a huge influence on the final vulnerability scores. The obtained results led to the development of a multidisciplinary approach through the application of a prediction and description model that resulted from the adaptation of the study system from a set of implemented models for coastal regions, in order to contribute to the erosion vulnerability assessment in the mangroves ecosystems (and associated localities, municipalities and communities). Numéro de notice : A2021-685 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10090598 Date de publication en ligne : 10/09/2021 En ligne : https://doi.org/10.3390/ijgi10090598 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98411
in ISPRS International journal of geo-information > vol 10 n° 9 (September 2021) . - n° 598[article]Aboveground biomass estimates of tropical mangrove forest using Sentinel-1 SAR coherence data : The superiority of deep learning over a semi-empirical model / S.M. Ghosh in Computers & geosciences, vol 150 (May 2021)
![]()
[article]
Titre : Aboveground biomass estimates of tropical mangrove forest using Sentinel-1 SAR coherence data : The superiority of deep learning over a semi-empirical model Type de document : Article/Communication Auteurs : S.M. Ghosh, Auteur ; M.D. Behera, Auteur Année de publication : 2021 Article en page(s) : n° 104737 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande C
[Termes IGN] biomasse aérienne
[Termes IGN] classification par réseau neuronal
[Termes IGN] forêt tropicale
[Termes IGN] image Sentinel-SAR
[Termes IGN] Inde
[Termes IGN] mangrove
[Termes IGN] R (langage)Résumé : (auteur) The availability of advanced Machine Learning algorithms has made the estimation process of biophysical parameters more efficient. However, the efficiency of those methods seldom compared with the efficiency of already established semi-empirical procedures. Aboveground biomass (AGB) of mangrove forests is a crucial biophysical parameter as it is positively correlated to the carbon stocks and fluxes. The free availability of Sentinel-1 C-band SAR data and machine learning algorithms hold promises in estimating AGB of tropical mangrove forests. We reported high AGB (70 t/ha to 666 t/ha) using 185 field quadrats of 0.04ha each from Bhitarkanika Wildlife Sanctuary, located on the eastern Indian coast that could be attributed to species composition. The AGB maps generated using Interferometric Water Cloud Model (IWCM) and Deep Learning models were different from each other as they rely on different variables. IWCM was more dependent, especially on ground and vegetation components of coherence, while canopy height acted as the most crucial variable in the Deep Learning model. However, the negligible variations in Deep Learning-based AGB maps can be attributed to interpreting the importance of coherence and VH backscatter. Due to low canopy penetration power of C-band SAR, high temporal decorrelation resulting from longer time gap between interferometric image pairs, and high spatial heterogeneity of mangrove forests, IWCM found as an unsuitable method for AGB estimation. Interestingly, a Deep Learning algorithm could translate the exact relationship between predictor variables and mangrove AGB in Bhitarkanika Wildlife Sanctuary. The AGB estimation studies in mangrove forests using Sentinel data should focus more on using machine learning algorithms like Deep Learning rather than semi-empirical models. Numéro de notice : A2021-941 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2021.104737 En ligne : https://doi.org/10.1016/j.cageo.2021.104737 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99751
in Computers & geosciences > vol 150 (May 2021) . - n° 104737[article]
Titre : Mapping and Monitoring Forest Cover Type de document : Monographie Auteurs : Russell G. Congalton, Éditeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2021 Importance : 144 p. ISBN/ISSN/EAN : 978-3-0365-2043-8 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte forestière
[Termes IGN] couvert forestier
[Termes IGN] forêt
[Termes IGN] image aérienne
[Termes IGN] image satellite
[Termes IGN] inventaire forestier local
[Termes IGN] mangroveNote de contenu : - Mapping and Monitoring Forest Cover
- Spatial and Temporal Changes in Vegetation in the Ruoergai Region, China
- Monitoring Mangrove Forest Degradation and Regeneration: Landsat Time Series Analysis of Moisture and Vegetation Indices at Rabigh Lagoon, Red Sea
- Monitoring Carbon Stock and Land-Use Change in 5000-Year-Old Juniper Forest Stand of Ziarat, Balochistan, through a Synergistic Approach
- Forest Cover Mapping Based on a Combination of Aerial Images and Sentinel-2 Satellite Data Compared to National Forest Inventory Data
- Use of Remote Sensing Data to Improve the Efficiency of National Forest Inventories: A Case Study from the United States National Forest Inventory
- A Comparison of Forest Tree Crown Delineation from Unmanned Aerial Imagery Using Canopy Height Models vs. Spectral LightnessNuméro de notice : 17141 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE/IMAGERIE Nature : Recueil / ouvrage collectif DOI : 10.3390/books978-3-0365-2044-5 En ligne : https://doi.org/10.3390/books978-3-0365-2044-5 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98631 Weighted spherical sampling of point clouds for forested scenes / Alex Fafard in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 10 (October 2020)
![]()
[article]
Titre : Weighted spherical sampling of point clouds for forested scenes Type de document : Article/Communication Auteurs : Alex Fafard, Auteur ; Ali Rouzbeh Kargar, Auteur ; Jan Van Aardt, Auteur Année de publication : 2020 Article en page(s) : pp 619 - 625 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] coordonnées sphériques
[Termes IGN] densité de la végétation
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] échantillonnage
[Termes IGN] mangrove
[Termes IGN] Micronésie
[Termes IGN] scène forestière
[Termes IGN] semis de points
[Termes IGN] volume en boisRésumé : (Auteur) Terrestrial laser scanning systems are characterized by a sampling pattern which varies in point density across the hemisphere. Additionally, close objects are over-sampled relative to objects that are farther away. These two effects compound to potentially bias the three-dimensional statistics of measured scenes. Previous methods of sampling have resulted in a loss of structural coherence. In this article, a method of sampling is proposed to optimally sample points while preserving the structure of a scene. Points are sampled along a spherical coordinate system, with probabilities modulated by elevation angle and squared distance from the origin. The proposed approach is validated through visual comparison and stem-volume assessment in a challenging mangrove forest in Micronesia. Compared to several well-known sampling techniques, the proposed approach reduces sampling bias and shows strong performance in stem-reconstruction measurement. The proposed sampling method matched or exceeded the stem-volume measurement accuracy across a variety of tested decimation levels. On average it achieved 3.0% higher accuracy at estimating stem volume than the closest competitor. This approach shows promise for improving the evaluation of terrestrial laser-scanning data in complex scenes. Numéro de notice : A2020-493 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.10.619 Date de publication en ligne : 01/10/2020 En ligne : https://doi.org/10.14358/PERS.86.10.619 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96093
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 10 (October 2020) . - pp 619 - 625[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020101 SL Revue Centre de documentation Revues en salle Disponible Applying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh / Mohammad Emran Hasan in Forests, vol 11 n° 9 (September 2020)
![]()
[article]
Titre : Applying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh Type de document : Article/Communication Auteurs : Mohammad Emran Hasan, Auteur ; Biswajit Nath, Auteur ; A.H.M. Raihan Sarker, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : N° 1016 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] automate cellulaire
[Termes IGN] Bangladesh
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] couvert forestier
[Termes IGN] déboisement
[Termes IGN] dégradation de l'environnement
[Termes IGN] détection de changement
[Termes IGN] gestion forestière durable
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] mangrove
[Termes IGN] modèle de Markov
[Termes IGN] modèle de simulation
[Termes IGN] occupation du sol
[Termes IGN] réserve forestière
[Termes IGN] réserve naturelle
[Termes IGN] santé des forêts
[Termes IGN] série temporelle
[Termes IGN] système d'information géographiqueRésumé : (auteur) Overdependence on and exploitation of forest resources have significantly transformed the natural reserve forest of Sundarban, which shares the largest mangrove territory in the world, into a great degradation status. By observing these, a most pressing concern is how much degradation occurred in the past, and what will be the scenarios in the future if they continue? To confirm the degradation status in the past decades and reveal the future trend, we took Sundarban Reserve Forest (SRF) as an example, and used satellite Earth observation historical Landsat imagery between 1989 and 2019 as existing data and primary data. Moreover, a geographic information system model was considered to estimate land cover (LC) change and spatial health quality of the SRF from 1989 to 2029 based on the large and small tree categories. The maximum likelihood classifier (MLC) technique was employed to classify the historical images with five different LC types, which were further considered for future projection (2029) including trends based on 2019 simulation results from 1989 and 2019 LC maps using the Markov-cellular automata model. The overall accuracy achieved was 82.30%~90.49% with a kappa value of 0.75~0.87. The historical result showed forest degradation in the past (1989–2019) of 4773.02 ha yr−1, considered as great forest degradation (GFD) and showed a declining status when moving with the projection (2019–2029) of 1508.53 ha yr−1 and overall there was a decline of 3956.90 ha yr−1 in the 1989–2029 time period. Moreover, the study also observed that dense forest was gradually degraded (good to bad) but, conversely, light forest was enhanced, which will continue in the future even to 2029 if no effective management is carried out. Therefore, by observing the GFD, through spatial forest health quality and forest degradation mapping and assessment, the study suggests a few policies that require the immediate attention of forest policy-makers to implement them immediately and ensure sustainable development in the SRF. Numéro de notice : A2020-752 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f11091016 Date de publication en ligne : 21/09/2020 En ligne : https://doi.org/10.3390/f11091016 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96432
in Forests > vol 11 n° 9 (September 2020) . - N° 1016[article]Monitoring narrow mangrove stands in Baja California Sur, Mexico using linear spectral unmixing / Jonathan B. Thayn in Marine geodesy, Vol 43 n° 5 (September 2020)
PermalinkDevelopment and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping / Alvin B. Baloloy in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkMangrove forest classification and aboveground biomass estimation using an atom search algorithm and adaptive neuro-fuzzy inference system / Minh Hai Pham in Plos one, vol 15 n° 5 (May 2020)
PermalinkCombining GF-2 and RapidEye satellite data for mapping mangrove species using ensemble machine-learning methods / Liheng Peng in International Journal of Remote Sensing IJRS, vol 41 n° 3 (15 - 22 janvier 2020)
PermalinkSegmenting mangrove ecosystems drone images using SLIC superpixels / Edward Zimudzi in Geocarto international, vol 34 n° 14 ([30/10/2019])
PermalinkDiscrimination and classification of mangrove forests using EO-1 Hyperion data : a case study of Indian Sundarbans / Tanumi Kumar in Geocarto international, vol 34 n° 4 ([15/03/2019])
PermalinkEstimation of aboveground biomass and carbon in a tropical rain forest in Gabon using remote sensing and GPS data / Kalifa Goïta in Geocarto international, vol 34 n° 3 ([01/03/2019])
PermalinkPermalinkEstimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery / Jose Alan A. Castillo in ISPRS Journal of photogrammetry and remote sensing, vol 134 (December 2017)
PermalinkA mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform / Bangqian Chen in ISPRS Journal of photogrammetry and remote sensing, vol 131 (September 2017)
Permalink