Descripteur



Etendre la recherche sur niveau(x) vers le bas
Weighted spherical sampling of point clouds for forested scenes / Alex Fafard in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 10 (October 2020)
![]()
[article]
Titre : Weighted spherical sampling of point clouds for forested scenes Type de document : Article/Communication Auteurs : Alex Fafard, Auteur ; Ali Rouzbeh Kargar, Auteur ; Jan Van Aardt, Auteur Année de publication : 2020 Article en page(s) : pp 619 - 625 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] Caroline (îles)
[Termes descripteurs IGN] coordonnées sphériques
[Termes descripteurs IGN] densité de la végétation
[Termes descripteurs IGN] diamètre à hauteur de poitrine
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] mangrove
[Termes descripteurs IGN] Micronésie
[Termes descripteurs IGN] scène forestière
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] volume en boisRésumé : (Auteur) Terrestrial laser scanning systems are characterized by a sampling pattern which varies in point density across the hemisphere. Additionally, close objects are over-sampled relative to objects that are farther away. These two effects compound to potentially bias the three-dimensional statistics of measured scenes. Previous methods of sampling have resulted in a loss of structural coherence. In this article, a method of sampling is proposed to optimally sample points while preserving the structure of a scene. Points are sampled along a spherical coordinate system, with probabilities modulated by elevation angle and squared distance from the origin. The proposed approach is validated through visual comparison and stem-volume assessment in a challenging mangrove forest in Micronesia. Compared to several well-known sampling techniques, the proposed approach reduces sampling bias and shows strong performance in stem-reconstruction measurement. The proposed sampling method matched or exceeded the stem-volume measurement accuracy across a variety of tested decimation levels. On average it achieved 3.0% higher accuracy at estimating stem volume than the closest competitor. This approach shows promise for improving the evaluation of terrestrial laser-scanning data in complex scenes. Numéro de notice : A2020-493 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.10.619 date de publication en ligne : 01/10/2020 En ligne : https://doi.org/10.14358/PERS.86.10.619 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96093
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 10 (October 2020) . - pp 619 - 625[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020101 SL Revue Centre de documentation Revues en salle Disponible Applying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh / Mohammad Emran Hasan in Forests, vol 11 n° 9 (September 2020)
![]()
[article]
Titre : Applying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh Type de document : Article/Communication Auteurs : Mohammad Emran Hasan, Auteur ; Biswajit Nath, Auteur ; A.H.M. Raihan Sarker, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : N° 1016 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] automate cellulaire
[Termes descripteurs IGN] Bangladesh
[Termes descripteurs IGN] classification par maximum de vraisemblance
[Termes descripteurs IGN] couvert forestier
[Termes descripteurs IGN] déboisement
[Termes descripteurs IGN] dégradation de l'environnement
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] gestion forestière durable
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image Landsat-TM
[Termes descripteurs IGN] mangrove
[Termes descripteurs IGN] modèle de Markov
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] réserve forestière
[Termes descripteurs IGN] réserve naturelle
[Termes descripteurs IGN] santé des forêts
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] système d'information géographiqueRésumé : (auteur) Overdependence on and exploitation of forest resources have significantly transformed the natural reserve forest of Sundarban, which shares the largest mangrove territory in the world, into a great degradation status. By observing these, a most pressing concern is how much degradation occurred in the past, and what will be the scenarios in the future if they continue? To confirm the degradation status in the past decades and reveal the future trend, we took Sundarban Reserve Forest (SRF) as an example, and used satellite Earth observation historical Landsat imagery between 1989 and 2019 as existing data and primary data. Moreover, a geographic information system model was considered to estimate land cover (LC) change and spatial health quality of the SRF from 1989 to 2029 based on the large and small tree categories. The maximum likelihood classifier (MLC) technique was employed to classify the historical images with five different LC types, which were further considered for future projection (2029) including trends based on 2019 simulation results from 1989 and 2019 LC maps using the Markov-cellular automata model. The overall accuracy achieved was 82.30%~90.49% with a kappa value of 0.75~0.87. The historical result showed forest degradation in the past (1989–2019) of 4773.02 ha yr−1, considered as great forest degradation (GFD) and showed a declining status when moving with the projection (2019–2029) of 1508.53 ha yr−1 and overall there was a decline of 3956.90 ha yr−1 in the 1989–2029 time period. Moreover, the study also observed that dense forest was gradually degraded (good to bad) but, conversely, light forest was enhanced, which will continue in the future even to 2029 if no effective management is carried out. Therefore, by observing the GFD, through spatial forest health quality and forest degradation mapping and assessment, the study suggests a few policies that require the immediate attention of forest policy-makers to implement them immediately and ensure sustainable development in the SRF. Numéro de notice : A2020-752 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f11091016 date de publication en ligne : 21/09/2020 En ligne : https://doi.org/10.3390/f11091016 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96432
in Forests > vol 11 n° 9 (September 2020) . - N° 1016[article]Monitoring narrow mangrove stands in Baja California Sur, Mexico using linear spectral unmixing / Jonathan B. Thayn in Marine geodesy, Vol 43 n° 5 (September 2020)
![]()
[article]
Titre : Monitoring narrow mangrove stands in Baja California Sur, Mexico using linear spectral unmixing Type de document : Article/Communication Auteurs : Jonathan B. Thayn, Auteur Année de publication : 2020 Article en page(s) : pp 493 - 508 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse linéaire des mélanges spectraux
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] mangrove
[Termes descripteurs IGN] Mexique
[Termes descripteurs IGN] réflectance spectraleRésumé : (auteur) Small stands of mangrove trees are difficult to detect and monitor using satellite remote sensing because the width of the narrow strips of vegetation are typically much smaller than the spatial resolution of the imagery. Every mangrove pixel also contains water and bare soil reflectance. Linear spectral unmixing, which estimates the fractional presence of specific land cover types per pixel, was performed on Landsat 8 imagery to detect mangroves on the eastern shoreline of the Bay of La Paz on the Baja California Peninsula of Mexico. Low-altitude aerial imagery collected from a DJI Mavic Pro drone was used as ground-reference data in the accuracy assessment. Continuous fractional presence of mangroves was detected with 80% accuracy and 85% of mangrove area was found. Future work will use linear spectral unmixing to systematically monitor mangrove extent and health in the region relative to expected growth in tourism development. Numéro de notice : A2020-483 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/01490419.2020.1751753 date de publication en ligne : 30/04/2020 En ligne : https://doi.org/10.1080/01490419.2020.1751753 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95636
in Marine geodesy > Vol 43 n° 5 (September 2020) . - pp 493 - 508[article]Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping / Alvin B. Baloloy in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
![]()
[article]
Titre : Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping Type de document : Article/Communication Auteurs : Alvin B. Baloloy, Auteur ; Ariel C. Blanco, Auteur ; Raymund Rhommel StaAna, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 95 - 117 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse spectrale
[Termes descripteurs IGN] Asie du sud-est
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] espèce exotique envahissante
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image proche infrarouge
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] indice de végétation
[Termes descripteurs IGN] mangrove
[Termes descripteurs IGN] orthophotographie
[Termes descripteurs IGN] Philippines
[Termes descripteurs IGN] Short Waves InfraRed
[Termes descripteurs IGN] surveillance du littoralRésumé : (auteur) Numéro de notice : A2020-354 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.06.001 date de publication en ligne : 11/06/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.06.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95240
in ISPRS Journal of photogrammetry and remote sensing > vol 166 (August 2020) . - pp 95 - 117[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020081 SL Revue Centre de documentation Revues en salle Disponible 081-2020083 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Combining GF-2 and RapidEye satellite data for mapping mangrove species using ensemble machine-learning methods / Liheng Peng in International Journal of Remote Sensing IJRS, vol 41 n° 3 (15 - 22 janvier 2020)
![]()
[article]
Titre : Combining GF-2 and RapidEye satellite data for mapping mangrove species using ensemble machine-learning methods Type de document : Article/Communication Auteurs : Liheng Peng, Auteur ; Kai Liu, Auteur ; Jingjing Cao, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 813 - 838 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] boosting adapté
[Termes descripteurs IGN] Chine, mer de
[Termes descripteurs IGN] classification et arbre de régression
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] écosystème
[Termes descripteurs IGN] extraction de la végétation
[Termes descripteurs IGN] île
[Termes descripteurs IGN] image Gaofen
[Termes descripteurs IGN] image RapidEye
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] mangrove
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] Rotation Forest classificationRésumé : (auteur) Mangrove forests are important constitutions for sustainable development of coastal ecosystems, and they are often mapped and monitored with remote sensing approaches. Satellite images allow detailed studies of the distribution and composition of mangrove forests, and therefore facilitate the management and conservation of the ecosystems. The combination of multiple types of satellite images with different spatial and spectral resolutions is helpful in mangrove forests extraction and mangrove species discrimination as it reduces sampling workload and increases classification accuracies. In this study, the 1.0-m-resolution Gaofen-2 (GF-2) and the 5.0-m-resolution RapidEye-4 (RE-4) satellite images, acquired in February 2017 and November 2016 respectively, were used with ensemble machine-learning and object-oriented methods for mangroves mapping at both the community and species levels of the Qi’ao Island, Zhuhai, China. First, the mangroves on the island were segmented from the GF-2 image on a large scale, and then they were extracted combining with their digital elevation model (DEM) data. Second, the GF-2 image was further processed on a fine scale, in which object-oriented features from both the GF-2 and RE-4 images were extracted for each mangrove species. Third, it is followed by the mangrove species classification process which involves three ensemble machine-learning methods: the adaptive boosting (AdaBoost), the random forest (RF) and the rotation forest (RoF). These three methods employed a classification and regression tree (CART) as the base classifier. The results show that the overall accuracy (OA) of mangrove area extraction on the Qi’ao Island with the auxiliary data, DEM, achieves 98.76% (Kappa coefficient (κ) = 0.9289). The features extracted by the GF-2 and RE-4 images were shown to be beneficial for mangrove species discrimination. A maximum improvement in the OA of approximately 8% and a κκ of approximately 0.10 were achieved when employing RoF (OA = 92.01%, κ = 0.9016). Ensemble-learning methods can significantly improve the classification accuracy of CART, and the use of a bagging scheme (RF and RoF) is shown as a better way to map mangrove species than adaptive boosting (AdaBoost). In addition, RoF performed well in mangrove species classification but it was not as robust as the RF, whose average OA and κκ were 80.59% and 0.7608, respectively, while the RoF’s were 77.45% and 0.7214, respectively, in the 10-fold cross-validation. Numéro de notice : A2020-212 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/01431161.2019.1648907 date de publication en ligne : 30/07/2019 En ligne : https://doi.org/10.1080/01431161.2019.1648907 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94897
in International Journal of Remote Sensing IJRS > vol 41 n° 3 (15 - 22 janvier 2020) . - pp 813 - 838[article]Segmenting mangrove ecosystems drone images using SLIC superpixels / Edward Zimudzi in Geocarto international, vol 34 n° 14 ([30/10/2019])
PermalinkDiscrimination and classification of mangrove forests using EO-1 Hyperion data : a case study of Indian Sundarbans / Tanumi Kumar in Geocarto international, vol 34 n° 4 ([15/03/2019])
PermalinkEstimation of aboveground biomass and carbon in a tropical rain forest in Gabon using remote sensing and GPS data / Kalifa Goïta in Geocarto international, vol 34 n° 3 ([01/03/2019])
PermalinkPermalinkEstimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery / Jose Alan A. Castillo in ISPRS Journal of photogrammetry and remote sensing, vol 134 (December 2017)
PermalinkA mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform / Bangqian Chen in ISPRS Journal of photogrammetry and remote sensing, vol 131 (September 2017)
PermalinkPotential application of remote sensing in monitoring ecosystem services of forests, mangroves and urban areas / Ram Avtar in Geocarto international, vol 32 n° 8 (August 2017)
PermalinkMonitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms / Lien T.H. Pham in ISPRS Journal of photogrammetry and remote sensing, vol 128 (June 2017)
PermalinkA cyber-enabled spatial decision support system to inventory mangroves in Mozambique: coupling scientific workflows and cloud computing / Wenwu Tang in International journal of geographical information science IJGIS, vol 31 n° 5-6 (May-June 2017)
PermalinkTélédétection pour l'observation des surfaces continentales, Volume 5. Observation des surfaces continentales par télédétection 3 / Nicolas Baghdadi (2017)
Permalink