Descripteur



Etendre la recherche sur niveau(x) vers le bas
Using a fully polarimetric SAR to detect landslide in complex surroundings: Case study of 2015 Shenzhen landslide / Chaoyang Niu in ISPRS Journal of photogrammetry and remote sensing, Vol 174 (April 2021)
![]()
[article]
Titre : Using a fully polarimetric SAR to detect landslide in complex surroundings: Case study of 2015 Shenzhen landslide Type de document : Article/Communication Auteurs : Chaoyang Niu, Auteur ; Haobo Zhang, Auteur ; Wei Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 56 - 67 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] décomposition d'image
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] mouvement de terrain
[Termes descripteurs IGN] polarimétrie radar
[Termes descripteurs IGN] processus d'analyse hiérarchique
[Termes descripteurs IGN] ShenzhenRésumé : (auteur) Synthetic aperture radar (SAR) polarimetry has demonstrated high efficiency in the detection of landslides in vegetated mountainous areas. In such places, post-landslide soil layers appear to correspond to the typical surface scattering mechanism, which is significantly different from the volume scattering behaviour of the surrounding vegetation. However, a landslide in the complex surroundings of various landforms, involving naked hillslopes, construction fields, bare farmlands, and other such aspects, may not be accurately identified owing to the occurrence of surface scattering behaviours. In order to detect landslides using SAR polarimetry without the limitation of vegetated mountainous areas, we propose a novel method of combining change detection (CD) and an analytic hierarchy process (AHP) based on the Yamaguchi decomposition (YD) to identify landslides while ensuring fewer false alarms. In particular, CD is applied to a pair of pre- and post-event datasets to determine the regions modified by landslides or human activities, and the AHP is performed over the post-event dataset to identify the suspect landslide region characterised by the surface scattering mechanism. Finally, the two results are fused by a logical operation to identify the actual landslide by removing the non-modified surface scattering regions. A case study of the Shenzhen landslide in complex surroundings was considered to verify the performance of the proposed method (CD-AHP). The results indicate that the method could clearly define the main body of the Shenzhen landslide from the city suburbs with a small number of false alarms. Therefore, this method provides a considerable perspective for landslide detection in complex surroundings using SAR polarimetry. Numéro de notice : A2021-207 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.022 date de publication en ligne : 19/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.022 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97184
in ISPRS Journal of photogrammetry and remote sensing > Vol 174 (April 2021) . - pp 56 - 67[article]Integration of an InSAR and ANN for sinkhole susceptibility mapping: A case study from Kirikkale-Delice (Turkey) / Hakan Nefeslioglu in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)
![]()
[article]
Titre : Integration of an InSAR and ANN for sinkhole susceptibility mapping: A case study from Kirikkale-Delice (Turkey) Type de document : Article/Communication Auteurs : Hakan Nefeslioglu, Auteur ; Beste Tavus, Auteur ; Melahat Er, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 119 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse de sensibilité
[Termes descripteurs IGN] carte géomorphologique
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] grotte
[Termes descripteurs IGN] image optique
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] itinéraire
[Termes descripteurs IGN] réseau de transport
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] TurquieRésumé : (auteur) Suitable route determination for linear engineering structures is a fundamental problem in engineering geology. Rapid evaluation of alternative routes is essential, and novel approaches are indispensable. This study aims to integrate various InSAR (Interferometric Synthetic Aperture Radar) techniques for sinkhole susceptibility mapping in the Kirikkale-Delice Region of Turkey, in which sinkhole formations have been observed in evaporitic units and a high-speed train railway route has been planned. Nine months (2019-2020) of ground deformations were determined using data from the European Space Agency’s (ESA) Sentinel-1A/1B satellites. A sinkhole inventory was prepared manually using satellite optical imagery and employed in an ANN (Artificial Neural Network) model with topographic conditioning factors derived from InSAR digital elevation models (DEMs) and morphological lineaments. The results indicate that high deformation areas on the vertical displacement map and sinkhole-prone areas on the sinkhole susceptibility map (SSM) almost coincide. InSAR techniques are useful for long-term deformation monitoring and can be successfully associated in sinkhole susceptibility mapping using an ANN. Continuous monitoring is recommended for existing sinkholes and highly susceptible areas, and SSMs should be updated with new results. Up-to-date SSMs are crucial for the route selection, planning, and construction of important transportation elements, as well as settlement site selection, in such regions. Numéro de notice : A2021-232 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10030119 date de publication en ligne : 27/02/2021 En ligne : https://doi.org/10.3390/ijgi10030119 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97226
in ISPRS International journal of geo-information > vol 10 n° 3 (March 2021) . - n° 119[article]Landslide susceptibility mapping and assessment using geospatial platforms and weights of evidence (WoE) method in the indian Himalayan region: Recent developments, gaps, and future directions / Amit Batar in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)
![]()
[article]
Titre : Landslide susceptibility mapping and assessment using geospatial platforms and weights of evidence (WoE) method in the indian Himalayan region: Recent developments, gaps, and future directions Type de document : Article/Communication Auteurs : Amit Batar, Auteur ; Teiji Watanabe, Auteur Année de publication : 2021 Article en page(s) : n° 114 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes descripteurs IGN] analyse bivariée
[Termes descripteurs IGN] analyse de sensibilité
[Termes descripteurs IGN] bassin hydrographique
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] géomorphologie locale
[Termes descripteurs IGN] Google Earth
[Termes descripteurs IGN] Himalaya
[Termes descripteurs IGN] Inde
[Termes descripteurs IGN] inventaire
[Termes descripteurs IGN] système d'information géographique
[Termes descripteurs IGN] théorème de BayesRésumé : (auteur) The Himalayan region and hilly areas face severe challenges due to landslide occurrences during the rainy seasons in India, and the study area, i.e., the Rudraprayag district, is no exception. However, the landslide related database and research are still inadequate in these landslide-prone areas. The main purpose of this study is: (1) to prepare the multi-temporal landslide inventory map using geospatial platforms in the data-scarce environment; (2) to evaluate the landslide susceptibility map using weights of evidence (WoE) method in the Geographical Information System (GIS) environment at the district level; and (3) to provide a comprehensive understanding of recent developments, gaps, and future directions related to landslide inventory, susceptibility mapping, and risk assessment in the Indian context. Firstly, 293 landslides polygon were manually digitized using the BHUVAN (Indian earth observation visualization) and Google Earth® from 2011 to 2013. Secondly, a total of 14 landslide causative factors viz. geology, geomorphology, soil type, soil depth, slope angle, slope aspect, relative relief, distance to faults, distance to thrusts, distance to lineaments, distance to streams, distance to roads, land use/cover, and altitude zones were selected based on the previous study. Then, the WoE method was applied to assign the weights for each class of causative factors to obtain a landslide susceptibility map. Afterward, the final landslide susceptibility map was divided into five susceptibility classes (very high, high, medium, low, and very low classes). Later, the validation of the landslide susceptibility map was checked against randomly selected landslides using IDRISI SELVA 17.0 software. Our study results show that medium to very high landslide susceptibilities had occurred in the non-forest areas, mainly scrubland, pastureland, and barren land. The results show that medium to very high landslide susceptibilities areas are in the upper catchment areas of the Mandakini river and adjacent to the National Highways (107 and 07). The results also show that landslide susceptibility is high in high relative relief areas and shallow soil, near thrusts and faults, and on southeast, south, and west-facing steep slopes. The WoE method achieved a prediction accuracy of 85.7%, indicating good accuracy of the model. Thus, this landslide susceptibility map could help the local governments in landslide hazard mitigation, land use planning, and landscape protection. Numéro de notice : A2021-233 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10030114 date de publication en ligne : 27/02/2021 En ligne : https://doi.org/10.3390/ijgi10030114 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97228
in ISPRS International journal of geo-information > vol 10 n° 3 (March 2021) . - n° 114[article]Machine learning in ground motion prediction / Farid Khosravikia in Computers & geosciences, vol 148 (March 2021)
![]()
[article]
Titre : Machine learning in ground motion prediction Type de document : Article/Communication Auteurs : Farid Khosravikia, Auteur ; Patricia Clayton, Auteur Année de publication : 2021 Article en page(s) : n° 104700 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] Etats-Unis
[Termes descripteurs IGN] modèle de régression
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] mouvement de terrain
[Termes descripteurs IGN] régression linéaire
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] sismicitéRésumé : (auteur) This paper studies the advantages and disadvantages of different machine learning techniques in predicting ground-motion intensity measures given source characteristics, source-to-site distance, and local site conditions. Typically, linear regression-based models with predefined equations and coefficients are used in ground motion prediction. However, restrictions of the linear regression models may limit their capabilities in extracting complex nonlinear behaviors in the data. Therefore, the present paper comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. This study quantifies event-to-event and site-to-site variability of the ground motions by implementing them as random effect terms to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4–500 km in Oklahoma, Kansas, and Texas since 2005. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring predefined equations or coefficients. Moreover, it is found that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Numéro de notice : A2021-230 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/POSITIONNEMENT Nature : Article DOI : 10.1016/j.cageo.2021.104700 date de publication en ligne : 21/01/2021 En ligne : https://doi.org/10.1016/j.cageo.2021.104700 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97220
in Computers & geosciences > vol 148 (March 2021) . - n° 104700[article]A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping / Zhice Fang in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
![]()
[article]
Titre : A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping Type de document : Article/Communication Auteurs : Zhice Fang, Auteur ; Yi Wang, Auteur ; Ling Peng, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 321 - 347 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] géomorphologie locale
[Termes descripteurs IGN] pondération
[Termes descripteurs IGN] régression logistique
[Termes descripteurs IGN] réseau neuronal récurrent
[Termes descripteurs IGN] risque naturelRésumé : (auteur) This study introduces four heterogeneous ensemble-learning techniques, that is, stacking, blending, simple averaging, and weighted averaging, to predict landslide susceptibility in Yanshan County, China. These techniques combine several state-of-the-art classifiers of convolutional neural network, recurrent neural network, support vector machine, and logistic regression in specific ways to produce reliable results and avoid problems with the model selection. The study consists of three main steps. The first step establishes a spatial database consisting of 16 landslide conditioning factors and 380 historical landslide locations. The second step randomly selects training (70% of the total) and test (30%) datasets out of grid cells corresponding to landslide and non-slide locations in the study area. The final step constructs the proposed heterogeneous ensemble-learning methods for landslide susceptibility mapping. The proposed ensemble-learning methods show higher prediction accuracy than the individual classifiers mentioned above based on statistical measures. The blending ensemble-learning method achieves the highest overall accuracy of 80.70% compared to the other ensemble-learning methods. Numéro de notice : A2021-028 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1808897 date de publication en ligne : 15/09/2020 En ligne : https://doi.org/10.1080/13658816.2020.1808897 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96704
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 321 - 347[article]A GIS-based system for spatial-temporal availability evaluation of the open spaces used as emergency shelters: The case of Victoria, British Columbia, Canada / Yibing Yao in ISPRS International journal of geo-information, vol 10 n° 2 (February 2021)
PermalinkGeomorphic analysis of Xiadian buried fault zone in Eastern Beijing plain based on SPOT image and unmanned aerial vehicle (UAV) data / Yanping Wang in Geomatics, Natural Hazards and Risk, vol 12 n° 1 (2021)
PermalinkModelling landslide hazards under global changes: the case of a Pyrenean valley / Séverine Bernardie in Natural Hazards and Earth System Sciences, vol 21 n° 1 (January 2021)
PermalinkApplication of various strategies and methodologies for landslide susceptibility maps on a basin scale: the case study of Val Tartano, Italy / Vasil Yordanov in Applied geomatics, vol 12 n° 4 (December 2020)
PermalinkLandslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan, Korea / Sunmin Lee in Geocarto international, vol 35 n° 15 ([01/11/2020])
PermalinkMacrozonation of seismic transient and permanent ground deformation of Iran / Saeideh Farahani in Natural Hazards and Earth System Sciences, vol 20 n° 11 (November 2020)
PermalinkTopographic connection method for automated mapping of landslide inventories, study case: semi urban sub-basin from Monterrey, Northeast of México / Nelly L. Ramirez Serrato in Geocarto international, vol 35 n° 15 ([01/11/2020])
PermalinkArctic tsunamis threaten coastal landscapes and communities – survey of Karrat Isfjord 2017 tsunami effects in Nuugaatsiaq, western Greenland / Mateusz C. Strzelecki in Natural Hazards and Earth System Sciences, vol 20 n° 9 (September 2020)
PermalinkAssessment of landslide susceptibility at a local spatial scale applying the multi-criteria analysis and GIS: a case study from Slovakia / Jana Vojteková in Geomatics, Natural Hazards and Risk, vol 11 n° 1 (2020)
PermalinkGeo-environment risk assessment in Zhengzhou City, China / Chuanming Ma in Geomatics, Natural Hazards and Risk, vol 11 n° 1 (2020)
PermalinkImproving drainage conditions of forest roads using the GIS and forest road simulator / Mehran Nasiri in Journal of forest science, vol 66 n° 9 (September 2020)
PermalinkA spaceborne SAR-based procedure to support the detection of landslides / Giuseppe Esposito in Natural Hazards and Earth System Sciences, vol 20 n° 9 (September 2020)
PermalinkData-driven evidential belief function (EBF) model in exploring landslide susceptibility zones for the Darjeeling Himalaya, India / Subrata Mondal in Geocarto international, Vol 35 n° 8 ([01/06/2020])
PermalinkDelineating minor landslide displacements using GPS and terrestrial laser scanning-derived terrain surfaces and trees: a case study of the Slumgullion landslide, Lake City, Colorado / Jin Wang in Survey review, vol 52 n° 372 (May 2020)
PermalinkMonitoring of landslide activity at the Sirobagarh landslide, Uttarakhand, India, using LiDAR, SAR interferometry and geodetic surveys / Ashutosh Tiwari in Geocarto international, vol 35 n° 5 ([01/04/2020])
PermalinkLe sol s'affaisse, l'eau monte [Delta du Gange-Brahmapoutre-Meghna] / Marielle Mayo in Géomètre, n° 2179 (avril 2020)
PermalinkComplex deformation at shallow depth during the 30 October 2016 Mw6.5 Norcia earthquake: interferencebetween tectonic and gravity processes? / Arthur Delorme in Tectonics, vol 39 n° 2 (February 2020)
![]()
PermalinkLandslide displacement mapping based on ALOS-2/PALSAR-2 data using image correlation techniques and SAR interferometry: application to the Hell-Bourg landslide (Salazie Circle, La Réunion Island) / Daniel Raucoules in Geocarto international, vol 35 n° 2 ([01/02/2020])
PermalinkLandslide susceptibility mapping using maximum entropy and support vector machine models along the highway corridor, Garhwal Himalaya / Vijendra Kumar Pandey in Geocarto international, vol 35 n° 2 ([01/02/2020])
PermalinkReal-time mapping of natural disasters using citizen update streams / Iranga Subasinghe in International journal of geographical information science IJGIS, vol 34 n° 2 (February 2020)
Permalink