Descripteur


Etendre la recherche sur niveau(x) vers le bas
Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling / Stefanos Georganos in Geocarto international, vol 36 n° 2 ([01/02/2021])
![]()
[article]
Titre : Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling Type de document : Article/Communication Auteurs : Stefanos Georganos, Auteur ; Tais Grippa, Auteur ; Assane Niang Gadiaga, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 121 -1 36 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] autocorrélation spatiale
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] Dakar
[Termes descripteurs IGN] densité de population
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] hétérogénéité spatiale
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] population
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) Machine learning algorithms such as Random Forest (RF) are being increasingly applied on traditionally geographical topics such as population estimation. Even though RF is a well performing and generalizable algorithm, the vast majority of its implementations is still ‘aspatial’ and may not address spatial heterogenous processes. At the same time, remote sensing (RS) data which are commonly used to model population can be highly spatially heterogeneous. From this scope, we present a novel geographical implementation of RF, named Geographical Random Forest (GRF) as both a predictive and exploratory tool to model population as a function of RS covariates. GRF is a disaggregation of RF into geographical space in the form of local sub-models. From the first empirical results, we conclude that GRF can be more predictive when an appropriate spatial scale is selected to model the data, with reduced residual autocorrelation and lower Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) values. Finally, and of equal importance, GRF can be used as an effective exploratory tool to visualize the relationship between dependent and independent variables, highlighting interesting local variations and allowing for a better understanding of the processes that may be causing the observed spatial heterogeneity. Numéro de notice : A2021-080 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1595177 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1595177 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96822
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 121 -1 36[article]Population dynamics and natural hazard risk management: conceptual and practical linkages for the case of Austrian policy making / Christoph Clar in Natural Hazards, Vol 105 n° 2 (January 2021)
![]()
[article]
Titre : Population dynamics and natural hazard risk management: conceptual and practical linkages for the case of Austrian policy making Type de document : Article/Communication Auteurs : Christoph Clar, Auteur ; Lukas Löschner, Auteur ; Ralf Nordbeck, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 765 - 1796 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] aide à la décision
[Termes descripteurs IGN] Autriche
[Termes descripteurs IGN] décroissance urbaine
[Termes descripteurs IGN] démographie
[Termes descripteurs IGN] enquête
[Termes descripteurs IGN] politique publique
[Termes descripteurs IGN] populationRésumé : (auteur) This contribution explores the conceptual and empirical linkages between population dynamics and natural hazard risk management (NHRM). Following a review of the international scholarly literature, we conduct a mixed-methods approach in Austria, combining an online survey among policy makers and other stakeholders with a thematic analysis of policy documents. The aim is to investigate the practical relevance of socio-demographic change in Austria’s NHRM. The study shows that many hazard-prone regions in Austria face population change, in particular demographic ageing and population decline. In addition, our findings from the online survey demonstrate the relevance of population dynamics in NHRM, especially with regard to hazard response and recovery. Nonetheless, policy formulation in NHRM overwhelmingly disregards demographic change as a relevant factor. Accordingly, the study underscores the importance of future-oriented risk management strategies to better account for ongoing and expected socio-demographic changes. Numéro de notice : A2021-202 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s11069-020-04376-z date de publication en ligne : 24/10/2020 En ligne : https://doi.org/10.1007/s11069-020-04376-z Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97162
in Natural Hazards > Vol 105 n° 2 (January 2021) . - pp 765 - 1796[article]Incorporating memory-based preferences and point-of-interest stickiness into recommendations in location-based social networks / Hang Zhang in ISPRS International journal of geo-information, vol 10 n° 1 (January 2021)
![]()
[article]
Titre : Incorporating memory-based preferences and point-of-interest stickiness into recommendations in location-based social networks Type de document : Article/Communication Auteurs : Hang Zhang, Auteur ; Mingxin Gan, Auteur ; Xi Sun, Auteur Année de publication : 2021 Article en page(s) : n° 10 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes descripteurs IGN] approche participative
[Termes descripteurs IGN] comportement
[Termes descripteurs IGN] filtrage d'information
[Termes descripteurs IGN] interprétation (psychologie)
[Termes descripteurs IGN] mémoire
[Termes descripteurs IGN] mobilité
[Termes descripteurs IGN] point d'intérêt
[Termes descripteurs IGN] réseau social géodépendant
[Termes descripteurs IGN] tourismeRésumé : (auteur) In location-based social networks (LBSNs), point-of-interest (POI) recommendations facilitate access to information for people by recommending attractive locations they have not previously visited. Check-in data and various contextual factors are widely taken into consideration to obtain people’s preferences regarding POIs in existing POI recommendation methods. In psychological effect-based POI recommendations, the memory-based attenuation of people’s preferences with respect to POIs, e.g., the fact that more attention is paid to POIs that were checked in to recently than those visited earlier, is emphasized. However, the memory effect only reflects the changes in an individual’s check-in trajectory and cannot discover the important POIs that dominate their mobility patterns, which are related to the repeat-visit frequency of an individual at a POI. To solve this problem, in this paper, we developed a novel POI recommendation framework using people’s memory-based preferences and POI stickiness, named U-CF-Memory-Stickiness. First, we used the memory-based preference-attenuation mechanism to emphasize personal psychological effects and memory-based preference evolution in human mobility patterns. Second, we took the visiting frequency of POIs into consideration and introduced the concept of POI stickiness to identify the important POIs that reflect the stable interests of an individual with respect to their mobility behavior decisions. Lastly, we incorporated the influence of both memory-based preferences and POI stickiness into a user-based collaborative filtering framework to improve the performance of POI recommendations. The results of the experiments we conducted on a real LBSN dataset demonstrated that our method outperformed other methods. Numéro de notice : A2021-148 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10010036 date de publication en ligne : 15/01/2021 En ligne : https://doi.org/10.3390/ijgi10010036 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97056
in ISPRS International journal of geo-information > vol 10 n° 1 (January 2021) . - n° 10[article]Local fuzzy geographically weighted clustering: a new method for geodemographic segmentation / George Grekousis in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
![]()
[article]
Titre : Local fuzzy geographically weighted clustering: a new method for geodemographic segmentation Type de document : Article/Communication Auteurs : George Grekousis, Auteur Année de publication : 2021 Article en page(s) : pp 152 - 174 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] classification floue
[Termes descripteurs IGN] données démographiques
[Termes descripteurs IGN] New York (Etats-Unis ; ville)
[Termes descripteurs IGN] optimisation par essaim de particules
[Termes descripteurs IGN] pondération
[Termes descripteurs IGN] régression géographiquement pondérée
[Termes descripteurs IGN] santé
[Termes descripteurs IGN] segmentation
[Termes descripteurs IGN] voisinage (topologie)Résumé : (auteur) Fuzzy geographically weighted clustering has been proposed as an approach for improving fuzzy c-means algorithm when applied to geodemographic analysis. This clustering method allows a spatial entity to belong to more than one cluster with varying degrees, namely, membership values. Although fuzzy geographically weighted clustering attempts to create geographically aware clusters, it partially fails to trace spatial dependence and heterogeneity because, as a global metric, the membership values are calculated across the entire set of spatial entities. Here we introduce the first local version of fuzzy geographically weighted clustering, ‘local fuzzy geographically weighted clustering.’ In local fuzzy geographically weighted clustering, the membership values of a spatial entity are updated only according to the membership values of the spatial entities within its neighborhood and not across the entire set of entities, as originally proposed by the global metric. Additionally, we apply particle swarm optimization meta-heuristic to overcome the random initialization problem regarding the fuzzy c-means algorithm. To evaluate our method we compare local fuzzy geographically weighted clustering to global fuzzy geographically weighted clustering using a cancer incident benchmark dataset for Manhattan, New York. The results show that local fuzzy geographically weighted clustering outperforms the global version in all experimental settings. Numéro de notice : A2021-022 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1808221 date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.1080/13658816.2020.1808221 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96525
in International journal of geographical information science IJGIS > vol 35 n° 1 (January 2021) . - pp 152 - 174[article]Urban construction waste with VHR remote sensing using multi-feature analysis and a hierarchical segmentation method / Qiang Chen in Remote sensing, vol 13 n° 1 (January 2021)
![]()
[article]
Titre : Urban construction waste with VHR remote sensing using multi-feature analysis and a hierarchical segmentation method Type de document : Article/Communication Auteurs : Qiang Chen, Auteur ; Qianhao Cheng, Auteur ; Jinfei Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 158 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] analyse multicritère
[Termes descripteurs IGN] analyse spectrale
[Termes descripteurs IGN] construction
[Termes descripteurs IGN] déchet
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] gestion urbaine
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] morphologie
[Termes descripteurs IGN] Pékin (Chine)
[Termes descripteurs IGN] segmentation hiérarchique
[Termes descripteurs IGN] urbanisationRésumé : (auteur) With rapid urbanization, the disposal and management of urban construction waste have become the main concerns of urban management. The distribution of urban construction waste is characterized by its wide range, irregularity, and ease of confusion with the surrounding ground objects, such as bare soil, buildings, and vegetation. Therefore, it is difficult to extract and identify information related to urban construction waste by using the traditional single spectral feature analysis method due to the problem of spectral confusion between construction waste and the surrounding ground objects, especially in the context of very-high-resolution (VHR) remote sensing images. Considering the multi-feature analysis method for VHR remote sensing images, we propose an optimal method that combines morphological indexing and hierarchical segmentation to extract the information on urban construction waste in VHR images. By comparing the differences between construction waste and the surrounding ground objects in terms of the spectrum, geometry, texture, and other features, we selected an optimal feature subset to improve the separability of the construction waste and other objects; then, we established a classification model of knowledge rules to achieve the rapid and accurate extraction of construction waste information. We also chose two experimental areas of Beijing to validate our algorithm. By using construction waste separability quality evaluation indexes, the identification accuracy of construction waste in the two study areas was determined to be 96.6% and 96.2%, the separability indexes of the construction waste and buildings reached 1.000, and the separability indexes of the construction waste and vegetation reached 1.000 and 0.818. The experimental results show that our method can accurately identify the exposed construction waste and construction waste covered with a dust screen, and it can effectively solve the problem of spectral confusion between the construction waste and the bare soil, buildings, and vegetation. Numéro de notice : A2021-073 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010158 date de publication en ligne : 05/01/2021 En ligne : https://doi.org/10.3390/rs13010158 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96809
in Remote sensing > vol 13 n° 1 (January 2021) . - n° 158[article]Exploring the heterogeneity of human urban movements using geo-tagged tweets / Ding Ma in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
PermalinkSemantic‐based urban growth prediction / Marvin Mc Cutchan in Transactions in GIS, Vol 24 n° 6 (December 2020)
PermalinkUsing multi-agent simulation to predict natural crossing points for pedestrians and choose locations for mid-block crosswalks / Egor Smirrnov in Geo-spatial Information Science, vol 23 n° 4 (December 2020)
PermalinkModalflow: cross-origin flow data visualization for urban mobility / Ignacio Pérez-Messina in Algorithms, vol 13 n° 11 (November 2020)
PermalinkUnfolding spatial-temporal patterns of taxi trip based on an improved network kernel density estimation / Boxi Shen in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
PermalinkMonitoring population dynamics in the Pearl River Delta from 2000 to 2010 / Sisi Yu in Geocarto international, vol 35 n° 14 ([15/10/2020])
PermalinkUrban Wi-Fi fingerprinting along a public transport route / Guenther Retscher in Journal of applied geodesy, vol 14 n° 4 (October 2020)
PermalinkImpact of extreme weather events on urban human flow: A perspective from location-based service data / Zhenhua Chen in Computers, Environment and Urban Systems, vol 83 (September 2020)
PermalinkMining regional patterns of land use with adaptive adjacent criteria / Xinmeng Tu in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)
PermalinkExploration of OpenStreetMap missing built-up areas using twitter hierarchical clustering and deep learning in Mozambique / Hao Li in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
Permalink