Descripteur


Etendre la recherche sur niveau(x) vers le bas
Understanding collective human movement dynamics during large-scale events using big geosocial data analytics / Junchuan Fan in Computers, Environment and Urban Systems, vol 87 (May 2021)
![]()
[article]
Titre : Understanding collective human movement dynamics during large-scale events using big geosocial data analytics Type de document : Article/Communication Auteurs : Junchuan Fan, Auteur ; Kathleen Stewart, Auteur Année de publication : 2021 Article en page(s) : n° 101605 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] collecte de données
[Termes descripteurs IGN] données GPS
[Termes descripteurs IGN] données issues des réseaux sociaux
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] données massives
[Termes descripteurs IGN] dynamique spatiale
[Termes descripteurs IGN] échantillonnage de données
[Termes descripteurs IGN] éclipse solaire
[Termes descripteurs IGN] estimation par noyau
[Termes descripteurs IGN] Etats-Unis
[Termes descripteurs IGN] événement
[Termes descripteurs IGN] géolocalisation
[Termes descripteurs IGN] migration humaine
[Termes descripteurs IGN] mobilité territoriale
[Termes descripteurs IGN] téléphonie mobileRésumé : (auteur) Conventional approaches for modeling human mobility pattern often focus on human activity and movement dynamics in their regular daily lives and cannot capture changes in human movement dynamics in response to large-scale events. With the rapid advancement of information and communication technologies, many researchers have adopted alternative data sources (e.g., cell phone records, GPS trajectory data) from private data vendors to study human movement dynamics in response to large-scale natural or societal events. Big geosocial data such as georeferenced tweets are publicly available and dynamically evolving as real-world events are happening, making it more likely to capture the real-time sentiments and responses of populations. However, precisely-geolocated geosocial data is scarce and biased toward urban population centers. In this research, we developed a big geosocial data analytical framework for extracting human movement dynamics in response to large-scale events from publicly available georeferenced tweets. The framework includes a two-stage data collection module that collects data in a more targeted fashion in order to mitigate the data scarcity issue of georeferenced tweets; in addition, a variable bandwidth kernel density estimation(VB-KDE) approach was adopted to fuse georeference information at different spatial scales, further augmenting the signals of human movement dynamics contained in georeferenced tweets. To correct for the sampling bias of georeferenced tweets, we adjusted the number of tweets for different spatial units (e.g., county, state) by population. To demonstrate the performance of the proposed analytic framework, we chose an astronomical event that occurred nationwide across the United States, i.e., the 2017 Great American Eclipse, as an example event and studied the human movement dynamics in response to this event. However, this analytic framework can easily be applied to other types of large-scale events such as hurricanes or earthquakes. Numéro de notice : A2021-275 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101605 date de publication en ligne : 05/02/2021 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101605 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97358
in Computers, Environment and Urban Systems > vol 87 (May 2021) . - n° 101605[article]Articuler cognition spatiale et cognition environnementale pour saisir les représentations socio-cognitives de l'espace / Thierry Ramadier in Revue internationale de géomatique, vol 30 n° 1-2 (janvier - mars 2020)
![]()
[article]
Titre : Articuler cognition spatiale et cognition environnementale pour saisir les représentations socio-cognitives de l'espace Type de document : Article/Communication Auteurs : Thierry Ramadier, Auteur Année de publication : 2021 Article en page(s) : pp 13 - 35 Note générale : bibliographie Langues : Français (fre) Descripteur : [Termes descripteurs IGN] cognition
[Termes descripteurs IGN] géographie sociale
[Termes descripteurs IGN] phénomène géographique
[Termes descripteurs IGN] représentation mentale spatialeNuméro de notice : A2020- Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3166/rig.2020.00101 En ligne : http://dx.doi.org/10.3166/rig.2020.00101 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97514
in Revue internationale de géomatique > vol 30 n° 1-2 (janvier - mars 2020) . - pp 13 - 35[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 047-2020011 SL Revue Centre de documentation Revues en salle Disponible
[article]
Titre : Des pixels et des peuples Type de document : Article/Communication Auteurs : Laurent Polidori, Auteur Année de publication : 2021 Article en page(s) : pp 15 - 15 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] croissance urbaine
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] frontière
[Termes descripteurs IGN] image thermique
[Termes descripteurs IGN] indicateur démographique
[Termes descripteurs IGN] mode d'occupation du sol
[Termes descripteurs IGN] population rurale
[Termes descripteurs IGN] population urbaineRésumé : (Auteur) Instruments de mesure physique, les satellites sont parfois utilisés pour l'étude des sociétés. Numéro de notice : A2021-324 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtSansCL DOI : sans date de publication en ligne : 07/04/2021 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97482
in Géomètre > n° 2190 (avril 2021) . - pp 15 - 15[article]Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling / Stefanos Georganos in Geocarto international, vol 36 n° 2 ([01/02/2021])
![]()
[article]
Titre : Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling Type de document : Article/Communication Auteurs : Stefanos Georganos, Auteur ; Tais Grippa, Auteur ; Assane Niang Gadiaga, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 121 -1 36 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] autocorrélation spatiale
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] Dakar
[Termes descripteurs IGN] densité de population
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] hétérogénéité spatiale
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] population
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) Machine learning algorithms such as Random Forest (RF) are being increasingly applied on traditionally geographical topics such as population estimation. Even though RF is a well performing and generalizable algorithm, the vast majority of its implementations is still ‘aspatial’ and may not address spatial heterogenous processes. At the same time, remote sensing (RS) data which are commonly used to model population can be highly spatially heterogeneous. From this scope, we present a novel geographical implementation of RF, named Geographical Random Forest (GRF) as both a predictive and exploratory tool to model population as a function of RS covariates. GRF is a disaggregation of RF into geographical space in the form of local sub-models. From the first empirical results, we conclude that GRF can be more predictive when an appropriate spatial scale is selected to model the data, with reduced residual autocorrelation and lower Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) values. Finally, and of equal importance, GRF can be used as an effective exploratory tool to visualize the relationship between dependent and independent variables, highlighting interesting local variations and allowing for a better understanding of the processes that may be causing the observed spatial heterogeneity. Numéro de notice : A2021-080 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1595177 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1595177 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96822
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 121 -1 36[article]Population dynamics and natural hazard risk management: conceptual and practical linkages for the case of Austrian policy making / Christoph Clar in Natural Hazards, Vol 105 n° 2 (January 2021)
![]()
[article]
Titre : Population dynamics and natural hazard risk management: conceptual and practical linkages for the case of Austrian policy making Type de document : Article/Communication Auteurs : Christoph Clar, Auteur ; Lukas Löschner, Auteur ; Ralf Nordbeck, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 765 - 1796 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] aide à la décision
[Termes descripteurs IGN] Autriche
[Termes descripteurs IGN] décroissance urbaine
[Termes descripteurs IGN] démographie
[Termes descripteurs IGN] enquête
[Termes descripteurs IGN] politique publique
[Termes descripteurs IGN] populationRésumé : (auteur) This contribution explores the conceptual and empirical linkages between population dynamics and natural hazard risk management (NHRM). Following a review of the international scholarly literature, we conduct a mixed-methods approach in Austria, combining an online survey among policy makers and other stakeholders with a thematic analysis of policy documents. The aim is to investigate the practical relevance of socio-demographic change in Austria’s NHRM. The study shows that many hazard-prone regions in Austria face population change, in particular demographic ageing and population decline. In addition, our findings from the online survey demonstrate the relevance of population dynamics in NHRM, especially with regard to hazard response and recovery. Nonetheless, policy formulation in NHRM overwhelmingly disregards demographic change as a relevant factor. Accordingly, the study underscores the importance of future-oriented risk management strategies to better account for ongoing and expected socio-demographic changes. Numéro de notice : A2021-202 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s11069-020-04376-z date de publication en ligne : 24/10/2020 En ligne : https://doi.org/10.1007/s11069-020-04376-z Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97162
in Natural Hazards > Vol 105 n° 2 (January 2021) . - pp 765 - 1796[article]Incorporating memory-based preferences and point-of-interest stickiness into recommendations in location-based social networks / Hang Zhang in ISPRS International journal of geo-information, vol 10 n° 1 (January 2021)
PermalinkLocal fuzzy geographically weighted clustering: a new method for geodemographic segmentation / George Grekousis in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
PermalinkUrban construction waste with VHR remote sensing using multi-feature analysis and a hierarchical segmentation method / Qiang Chen in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkExploring the heterogeneity of human urban movements using geo-tagged tweets / Ding Ma in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
PermalinkSemantic‐based urban growth prediction / Marvin Mc Cutchan in Transactions in GIS, Vol 24 n° 6 (December 2020)
PermalinkUsing multi-agent simulation to predict natural crossing points for pedestrians and choose locations for mid-block crosswalks / Egor Smirrnov in Geo-spatial Information Science, vol 23 n° 4 (December 2020)
PermalinkModalflow: cross-origin flow data visualization for urban mobility / Ignacio Pérez-Messina in Algorithms, vol 13 n° 11 (November 2020)
PermalinkUnfolding spatial-temporal patterns of taxi trip based on an improved network kernel density estimation / Boxi Shen in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
PermalinkMonitoring population dynamics in the Pearl River Delta from 2000 to 2010 / Sisi Yu in Geocarto international, vol 35 n° 14 ([15/10/2020])
PermalinkUrban Wi-Fi fingerprinting along a public transport route / Guenther Retscher in Journal of applied geodesy, vol 14 n° 4 (October 2020)
PermalinkImpact of extreme weather events on urban human flow: A perspective from location-based service data / Zhenhua Chen in Computers, Environment and Urban Systems, vol 83 (September 2020)
PermalinkMining regional patterns of land use with adaptive adjacent criteria / Xinmeng Tu in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)
PermalinkExploration of OpenStreetMap missing built-up areas using twitter hierarchical clustering and deep learning in Mozambique / Hao Li in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkLanduse and land cover identification and disaggregating socio-economic data with convolutional neural network / Jingtao Yao in Geocarto international, vol 35 n° 10 ([01/08/2020])
PermalinkObjets connectés et mobilité urbaine : visualiser les déplacements des usagers de Twitter avec des graphes dynamiques / Françoise Lucchini in Mappemonde [en ligne], n° 128 (juillet 2020)
PermalinkAn empirical study on the intra-urban goods movement patterns using logistics big data / Pengxiang Zhao in International journal of geographical information science IJGIS, vol 34 n° 6 (June 2020)
PermalinkEstimating and interpreting fine-scale gridded population using random forest regression and multisource data / Yun Zhou in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
PermalinkExtracting activity patterns from taxi trajectory data: a two-layer framework using spatio-temporal clustering, Bayesian probability and Monte Carlo simulation / Shuhui Gong in International journal of geographical information science IJGIS, vol 34 n° 6 (June 2020)
PermalinkExtracting commuter-specific destination hotspots from trip destination data – comparing the boro taxi service with Citi Bike in NYC / Andreas Keler in Geo-spatial Information Science, vol 23 n° 2 (June 2020)
PermalinkFine-scale dasymetric population mapping with mobile phone and building use data based on grid Voronoi method / Zhenzhong Peng in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
Permalink