Descripteur
Termes IGN > sciences humaines et sociales > géographie humaine > démographie > données démographiques
données démographiques |
Documents disponibles dans cette catégorie (109)



Etendre la recherche sur niveau(x) vers le bas
A comparative assessment of the statistical methods based on urban population density estimation / Merve Yılmaz in Geocarto international, vol 38 n° 1 ([01/01/2023])
![]()
[article]
Titre : A comparative assessment of the statistical methods based on urban population density estimation Type de document : Article/Communication Auteurs : Merve Yılmaz, Auteur Année de publication : 2023 Article en page(s) : n° 2152494 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] densité de population
[Termes IGN] planification urbaine
[Termes IGN] population urbaine
[Termes IGN] régression géographiquement pondérée
[Termes IGN] régression multiple
[Termes IGN] TurquieRésumé : (auteur) Population density is important spatial information for addressing the use and access to land resources in cities under the Sustainable Development Goals. This is because the spatial data support appropriate spatial policies at the spatial scale and predicts how much land will be consumed in the future. The study aims to compare and evaluate the regression tools in the context of estimating the population density difference. The three analysis tools used are Random Forest-Based Classification, Multiple Linear Regression, and Geographically Weighted Regression. The sampling area covers cities around Türkiye. Comparative results showed that the two most important descriptive variables in the Random Forest-Based Classification model are the density difference of the new developed area and the connectivity. The three main explanatory variables of the Multiple Linear Regression model are centrality, vehicle ownership, and accessibility. The results of the Multiple Linear Regression model (a non-spatial model) and the Geographically Weighted Regression model (a spatial model), were found to be quite similar. The importance of accessibility and connectivity is more evident in the Multiple Linear Regression model when the Random Forest-Based Classification model highlights the density values in the new development areas. Numéro de notice : A2023-055 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2022.2152494 Date de publication en ligne : 28/12/2022 En ligne : https://doi.org/10.1080/10106049.2022.2152494 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102388
in Geocarto international > vol 38 n° 1 [01/01/2023] . - n° 2152494[article]Landscape metrics regularly outperform other traditionally-used ancillary datasets in dasymetric mapping of population / Heng Wan in Computers, Environment and Urban Systems, vol 99 (January 2023)
![]()
[article]
Titre : Landscape metrics regularly outperform other traditionally-used ancillary datasets in dasymetric mapping of population Type de document : Article/Communication Auteurs : Heng Wan, Auteur ; Jim Yoon, Auteur ; Vivek Srikrishnan, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 101899 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] carte thématique
[Termes IGN] densité de population
[Termes IGN] distribution spatiale
[Termes IGN] Etats-Unis
[Termes IGN] indicateur paysager
[Termes IGN] interpolation
[Termes IGN] occupation du sol
[Termes IGN] paysage
[Termes IGN] planification urbaine
[Termes IGN] réduction d'échelleRésumé : (auteur) Population downscaling and interpolation methods are required to produce data which correspond to spatial units used in urban planning, demography, and environmental modeling. Population data are typically aggregated at census enumeration units, which can have arbitrary, temporally-evolving boundaries. Previous approaches to imperviousness-based dasymetric mapping ignore cell-level patterning of imperviousness within a spatial unit of prediction, which potentially serve as a strong indicator of population. Landscape metrics derived from imperviousness data offer a promising approach to capture these patterns. In this study, we incorporate landscape metrics derived from impervious cover percentage maps into intelligent dasymetric mapping to downscale population from census tracts to block groups in four states with varying population densities: Connecticut, South Carolina, West Virginia, and New Mexico. We compare the performance of the landscape metrics-based models against two baseline models in all four states across three different time periods. The results show that intelligent dasymetric mapping using landscape metrics generally outperforms the two baseline models. We further compare the performance of landscape metrics as an ancillary source of information for dasymetric mapping against other traditionally-used datasets (e.g., land use, roads, nighttime lights data) in three states (Connecticut, South Carolina, and New Mexico) in 2000. We find that class area, landscape shape index, and number of patches consistently achieve lower error rates than other ancillary datasets in all the three states. Numéro de notice : A2023-013 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101899 Date de publication en ligne : 02/11/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101899 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102130
in Computers, Environment and Urban Systems > vol 99 (January 2023) . - n° 101899[article]From data to narratives: Scrutinising the spatial dimensions of social and cultural phenomena through lenses of interactive web mapping / Tian Lan in Journal of Geovisualization and Spatial Analysis, vol 6 n° 2 (December 2022)
![]()
[article]
Titre : From data to narratives: Scrutinising the spatial dimensions of social and cultural phenomena through lenses of interactive web mapping Type de document : Article/Communication Auteurs : Tian Lan, Auteur ; Oliver O'Brien, Auteur ; James Cheshire, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 22 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] carte interactive
[Termes IGN] cartographie sensible
[Termes IGN] culture
[Termes IGN] données démographiques
[Termes IGN] données socio-économiques
[Termes IGN] impact social
[Termes IGN] récit
[Termes IGN] Royaume-Uni
[Termes IGN] sciences sociales
[Termes IGN] web mappingMots-clés libres : narrative mapping Résumé : (auteur) Modern web mapping techniques have enhanced the storytelling capability of cartography. In this paper, we present our recent development of a web mapping facility that can be used to extract interesting stories and unique insights from a diverse range of socio-economic and demographic variables and indicators, derived from a variety of datasets. We then use three curated narratives to show that online maps are effective ways of interactive storytelling and visualisation, which allow users to tailor their own story maps. We discuss the reasons for the revival of the recent attention to narrative mapping and conclude that our interactive web mapping facility powered by data assets can be employed as an accessible and powerful toolkit, to identify geographic patterns of various social and economic phenomena by social scientists, journalists, policymakers, and the public. Numéro de notice : A2022-541 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s41651-022-00117-x Date de publication en ligne : 16/06/2022 En ligne : https://doi.org/10.1007/s41651-022-00117-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101105
in Journal of Geovisualization and Spatial Analysis > vol 6 n° 2 (December 2022) . - n° 22[article]Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators / Luis Izquierdo-Horna in Computers, Environment and Urban Systems, vol 96 (September 2022)
![]()
[article]
Titre : Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators Type de document : Article/Communication Auteurs : Luis Izquierdo-Horna, Auteur ; Miker Damazo, Auteur ; Deyvis Yanayaco, Auteur Année de publication : 2022 Article en page(s) : n° 101834 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] déchet
[Termes IGN] densité de population
[Termes IGN] données socio-économiques
[Termes IGN] Pérou
[Termes IGN] régression logistique
[Termes IGN] zone urbaineRésumé : (auteur) In the last decades, the accumulation of municipal solid waste in urban areas has become a latent concern in our society due to its implications for the exposed population and the possible health and environmental issues it may cause. In this sense, this research study contributes to the timely identification of these sectors according to the anthropogenic characteristics of their residents as dictated by 10 social indicators (i.e., age, education, income, among others) sorted into three assessment categories (sociodemographic, sociocultural, and socioeconomic). Then, the data collected was processed and analyzed using two machine learning algorithms (random forest (RF) and logistic regression (LR)). The primary information that fed the machine learning model was collected through field visits and local/national reports. For this research, the Puente Piedra and Chaclacayo districts, both located in the province of Lima, Peru, were selected as case studies. Results suggest that the most relevant social indicators that help identifying these sectors are monthly income, consumption patterns, age, and household population density. The experiments showed that the RF algorithm has the best performance, since it efficiently identified 63% of the possible solid waste accumulation zones. In addition, both models were capable of determining different classes (AUC – RF = 0.65, AUC – LR = 0.71). Finally, the proposed approach is applicable and reproducible in different sectors of the national Peruvian territory. Numéro de notice : A2022-512 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101834 Date de publication en ligne : 10/06/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101834 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101052
in Computers, Environment and Urban Systems > vol 96 (September 2022) . - n° 101834[article]Measuring COVID-19 vulnerability for Northeast Brazilian municipalities: Social, economic, and demographic factors based on multiple criteria and spatial analysis / Ciro José Jardim De Figueiredo in ISPRS International journal of geo-information, vol 11 n° 8 (August 2022)
![]()
[article]
Titre : Measuring COVID-19 vulnerability for Northeast Brazilian municipalities: Social, economic, and demographic factors based on multiple criteria and spatial analysis Type de document : Article/Communication Auteurs : Ciro José Jardim De Figueiredo, Auteur ; Caroline Maria de Miranda Mota, Auteur ; Kaliane Gabriele Dias de Araújo, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 449 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse multicritère
[Termes IGN] autocorrélation spatiale
[Termes IGN] Brésil
[Termes IGN] densité de population
[Termes IGN] données socio-économiques
[Termes IGN] épidémie
[Termes IGN] maladie virale
[Termes IGN] vulnérabilitéRésumé : (auteur) COVID-19 has brought several harmful consequences to the world from many perspectives, including social, economic, and well-being in addition to health issues. However, these harmful consequences vary in intensity in different regions. Identifying which cities are most vulnerable to COVID-19 and understanding which variables could be associated with the advance of registered cases is a challenge. Therefore, this study explores and builds a spatial decision model to identify the characteristics of the cities that are most vulnerable to COVID-19, taking into account social, economic, demographic, and territorial aspects. Hence, 18 features were separated into the four groups mentioned. We employed a model joining the dominance-based rough set approach to aggregate the features (multiple criteria) and spatial analysis (Moran index, and Getis and Ord) to obtain final results. The results show that the most vulnerable places have characteristics with high population density and poor economic conditions. In addition, we conducted subsequent analysis to validate the results. The case was developed in the northeast region of Brazil. Numéro de notice : A2022-646 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11080449 Date de publication en ligne : 16/08/2022 En ligne : https://doi.org/10.3390/ijgi11080449 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101462
in ISPRS International journal of geo-information > vol 11 n° 8 (August 2022) . - n° 449[article]Temporal transitions of demographic dot maps / Jeff Allen in International journal of cartography, vol 8 n° 2 (July 2022)
PermalinkMapping monthly population distribution and variation at 1-km resolution across China / Zhifeng Cheng in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
PermalinkSpatial modeling of migration using GIS-based multi-criteria decision analysis: A case study of Iran / Naeim Mijani in Transactions in GIS, vol 26 n° 2 (April 2022)
PermalinkDynamic linkage between urbanization, electrical power consumption, and suitability analysis using remote sensing and GIS techniques / Muhammad Nasar Ahmad in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 3 (March 2022)
PermalinkThe geography of social media data in urban areas: Representativeness and complementarity / Alvaro Bernabeu-Bautista in ISPRS International journal of geo-information, vol 10 n° 11 (November 2021)
PermalinkSpatial interpolation of mobile positioning data for population statistics / Anto Aasa in Journal of location-based services, vol 15 n° 4 ([01/10/2021])
PermalinkDevelopment of a GIS-based alert system to mitigate flash flood impacts in Asyut governorate, Egypt / Soha A. Mohamed in Natural Hazards, vol 108 n° 3 (September 2021)
PermalinkGIS-based logic scoring of preference method for urban densification suitability analysis / Shuoge Shen in Computers, Environment and Urban Systems, vol 89 (September 2021)
PermalinkGeographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling / Stefanos Georganos in Geocarto international, vol 36 n° 2 ([01/02/2021])
PermalinkLocal fuzzy geographically weighted clustering: a new method for geodemographic segmentation / George Grekousis in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
Permalink