Descripteur
Termes descripteurs IGN > environnement > pollution
pollution
Commentaire :
contamination de l'environnement, dégradation de l'environnement, dommage à l'environnement, pollution chimique, pollution de l'environnement, pollution industrielle. contamination, politique de l'environnement, empreinte écologique, technique sanitaire. >> restauration in situ, rspect de l'environnement, effet de la pollution, résistance à la pollution, déchet dangereux, déchet industriel, hygiène du milieu, polluant, lutte contre la pollution. >>Terme(s) spécifique(s) : site contaminé, pollution lumineuse, pollution atmosphérique, pollution par le bruit, catastrophe écologique, pollution de l'eau, résidu de pesticide, pollution du sol, désamiantage, sédiment contaminé, pollution agricole. Equiv. LCSH : Pollution. Domaine(s) : 570. Voir aussi |



Etendre la recherche sur niveau(x) vers le bas
Crowdsourcing without data bias: Building a quality assurance system for air pollution symptom mapping / Marta Samulowska in ISPRS International journal of geo-information, vol 10 n° 2 (February 2021)
![]()
[article]
Titre : Crowdsourcing without data bias: Building a quality assurance system for air pollution symptom mapping Type de document : Article/Communication Auteurs : Marta Samulowska, Auteur ; Szymon Chmielewski, Auteur ; Edwin Raczko, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 46 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes descripteurs IGN] carte sanitaire
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] pollution atmosphérique
[Termes descripteurs IGN] production participative
[Termes descripteurs IGN] qualité de l'air
[Termes descripteurs IGN] qualité des données
[Termes descripteurs IGN] science citoyenne
[Termes descripteurs IGN] surveillance sanitaire
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) Crowdsourcing is one of the spatial data sources, but due to its unstructured form, the quality of noisy crowd judgments is a challenge. In this study, we address the problem of detecting and removing crowdsourced data bias as a prerequisite for better-quality open-data output. This study aims to find the most robust data quality assurance system (QAs). To achieve this goal, we design logic-based QAs variants and test them on the air quality crowdsourcing database. By extending the paradigm of urban air pollution monitoring from particulate matter concentration levels to air-quality-related health symptom load, the study also builds a new perspective for citizen science (CS) air quality monitoring. The method includes the geospatial web (GeoWeb) platform as well as a QAs based on conditional statements. A four-month crowdsourcing campaign resulted in 1823 outdoor reports, with a rejection rate of up to 28%, depending on the applied. The focus of this study was not on digital sensors’ validation but on eliminating logically inconsistent surveys and technologically incorrect objects. As the QAs effectiveness may depend on the location and society structure, that opens up new cross-border opportunities for replication of the research in other geographical conditions. Numéro de notice : A2021-153 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10020046 date de publication en ligne : 22/01/2021 En ligne : https://doi.org/10.3390/ijgi10020046 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97064
in ISPRS International journal of geo-information > vol 10 n° 2 (February 2021) . - n° 46[article]Mitigating urban visual pollution through a multistakeholder spatial decision support system to optimize locational potential of billboards / Khydija Wakil in ISPRS International journal of geo-information, vol 10 n° 2 (February 2021)
![]()
[article]
Titre : Mitigating urban visual pollution through a multistakeholder spatial decision support system to optimize locational potential of billboards Type de document : Article/Communication Auteurs : Khydija Wakil, Auteur ; Ali Tahir, Auteur ; Muhammad Hussnain, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 60 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes descripteurs IGN] affichage
[Termes descripteurs IGN] analyse spatiale
[Termes descripteurs IGN] Pakistan
[Termes descripteurs IGN] pollution
[Termes descripteurs IGN] processus d'analyse hiérarchisée floue
[Termes descripteurs IGN] publicité
[Termes descripteurs IGN] système d'aide à la décision
[Termes descripteurs IGN] urbanismeRésumé : (auteur) Urban visual pollution is increasingly affecting the built-up areas of the rapidly urbanizing planet. Outdoor advertisements are the key visual pollution objects affecting the visual pollution index and revenue generation potential of a place. Current practices of uninformed and uncontrolled outdoor advertising (especially billboards) impairs effective control of visual pollution in developing countries. Improving this can result in over 20% reduction of visual pollution. This article presents a spatial decision support system (SDSS) to facilitate all the stakeholders (development control authorities, advertisers, billboard owners, and the public) in balancing the optimal positioning of billboards under the governing regulations. In terms of its technical implementation, SDSS is based on well-known geospatial open source technologies and uses an analytical hierarchy process AHP-inspired approach in spatial decision-making. It can help users through its category-specific user interface to identify potential sites to position new billboards and the selection of boards from existing sites based on a wide variety of characteristics. The observations of all stakeholders have been recorded through panel feedback to assess the system’s initial effectiveness. The proposed system has been found functional in identifying hot spots for the focused management and exploration of the best suitable sites for new billboards. So, it helps the advertising agencies, urban authorities, and city councils in better planning and management of existing billboard locations to optimize revenue and improve urban aesthetics. The system can be replicated in other countries irrespective of spatial boundaries by incorporating jurisdictional rules and regulations. Numéro de notice : A2021-156 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10020060 date de publication en ligne : 01/02/2021 En ligne : https://doi.org/10.3390/ijgi10020060 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97062
in ISPRS International journal of geo-information > vol 10 n° 2 (February 2021) . - n° 60[article]The strong and the stronger: The effects of increasing ozone and nitrogen dioxide concentrations in pollen of different forest species / Sónia Pereira in Forests, vol 12 n° 1 (January 2021)
![]()
[article]
Titre : The strong and the stronger: The effects of increasing ozone and nitrogen dioxide concentrations in pollen of different forest species Type de document : Article/Communication Auteurs : Sónia Pereira, Auteur ; Maria Fernández-González, Auteur ; Alexandra Guedes, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 88 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] Acer negundo
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] Betula pendula
[Termes descripteurs IGN] Corylus avellana
[Termes descripteurs IGN] dioxyde d'azote
[Termes descripteurs IGN] Europe (géographie politique)
[Termes descripteurs IGN] indice de stress
[Termes descripteurs IGN] ozone
[Termes descripteurs IGN] pollen
[Termes descripteurs IGN] pollution atmosphérique
[Termes descripteurs IGN] protection de l'environnement
[Termes descripteurs IGN] Quercus pedunculata
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) The knowledge of pollen sensitivity and tolerance to stress factors such as air pollution is important for forest sustainability, ensuring the most efficient production with the highest benefits and lowest resource losses. This study intended to evaluate the influence of common air pollutants in four forest trees species, Betula pendula Roth, Corylus avellana L., Acer negundo L. and Quercus robur L., through a comparative analysis at the same experimental conditions. We aimed to investigate the effect that may occur in pollen fertility, protein content, oxidative stress and wall composition after exposure in vitro to ozone and nitrogen dioxide at concentration levels for vegetation protection in Europe. Our results suggest changes in pollen viability, protein content and differential sensitivity related to ROS synthesis, NADPH oxidase activity, as well as in wall composition. The results indicate that NO2 exposure affected more the pollen species studied mostly at the highest concentration exposure. As for ozone, there were less significant differences between samples; however, a different behavior occurs in O3 expositions, where the most influence happens at the legal limit for vegetation protection in Europe. Our study showed that significant pollen functions could be compromised even at common air pollutant’s concentrations. Numéro de notice : A2021-143 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f12010088 date de publication en ligne : 15/01/2021 En ligne : https://doi.org/10.3390/f12010088 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97046
in Forests > vol 12 n° 1 (January 2021) . - n° 88[article]Deep learning for detecting and classifying ocean objects: application of YoloV3 for iceberg–ship discrimination / Frederik Hass in ISPRS International journal of geo-information, vol 9 n° 12 (December 2020)
![]()
[article]
Titre : Deep learning for detecting and classifying ocean objects: application of YoloV3 for iceberg–ship discrimination Type de document : Article/Communication Auteurs : Frederik Hass, Auteur ; Jamal Jokar Arsanjani, Auteur Année de publication : 2020 Article en page(s) : n° 758 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] Groenland
[Termes descripteurs IGN] hydrocarbure
[Termes descripteurs IGN] iceberg
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] navire
[Termes descripteurs IGN] océan
[Termes descripteurs IGN] seuillage d'image
[Termes descripteurs IGN] trafic maritimeRésumé : (auteur) Synthetic aperture radar (SAR) plays a remarkable role in ocean surveillance, with capabilities of detecting oil spills, icebergs, and marine traffic both at daytime and at night, regardless of clouds and extreme weather conditions. The detection of ocean objects using SAR relies on well-established methods, mostly adaptive thresholding algorithms. In most waters, the dominant ocean objects are ships, whereas in arctic waters the vast majority of objects are icebergs drifting in the ocean and can be mistaken for ships in terms of navigation and ocean surveillance. Since these objects can look very much alike in SAR images, the determination of what objects actually are still relies on manual detection and human interpretation. With the increasing interest in the arctic regions for marine transportation, it is crucial to develop novel approaches for automatic monitoring of the traffic in these waters with satellite data. Hence, this study aims at proposing a deep learning model based on YoloV3 for discriminating icebergs and ships, which could be used for mapping ocean objects ahead of a journey. Using dual-polarization Sentinel-1 data, we pilot-tested our approach on a case study in Greenland. Our findings reveal that our approach is capable of training a deep learning model with reliable detection accuracy. Our methodical approach along with the choice of data and classifiers can be of great importance to climate change researchers, shipping industries and biodiversity analysts. The main difficulties were faced in the creation of training data in the Arctic waters and we concluded that future work must focus on issues regarding training data. Numéro de notice : A2020-808 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9120758 date de publication en ligne : 19/12/2020 En ligne : https://doi.org/10.3390/ijgi9120758 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96953
in ISPRS International journal of geo-information > vol 9 n° 12 (December 2020) . - n° 758[article]Geo-environment risk assessment in Zhengzhou City, China / Chuanming Ma in Geomatics, Natural Hazards and Risk, vol 11 n° 1 (2020)
![]()
[article]
Titre : Geo-environment risk assessment in Zhengzhou City, China Type de document : Article/Communication Auteurs : Chuanming Ma, Auteur ; Wu Yan, Auteur ; Xinjie Hu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 40 - 70 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] évaluation des données
[Termes descripteurs IGN] gestion des risques
[Termes descripteurs IGN] pollution des eaux
[Termes descripteurs IGN] processus d'analyse hiérarchique
[Termes descripteurs IGN] risque environnemental
[Termes descripteurs IGN] séisme
[Termes descripteurs IGN] structure hiérarchique de données
[Termes descripteurs IGN] surveillance géologique
[Termes descripteurs IGN] urbanisme
[Termes descripteurs IGN] zone urbaine denseRésumé : (auteur) The urban geological environment risk assessment is based on the research and analysis of the main geological environmental problems of the city, comprehensively assessing the risk of urban geological environment problems and the possible losses, and studying the degree of matching between the natural and social attributes of the geological environment. According to the urban planning of Zhengzhou City, the different types of functional areas of the city were used as evaluation objects, and the analytic hierarchy-composite index model was used to evaluate the geological environment risk and social economic vulnerability. The risk assessment model was used to evaluate the geological environment risk of Zhengzhou City. The evaluation results show that the area of high-risk area in Zhengzhou accounts for 4.05%; the area of medium-high risk area accounts for 12.89%; the area of medium-low and low-risk area accounts for 83.06%. According to the assessment results, suggestions are put forward to provide service for the urban planning, development and risk management.
Highlights:
* An urban geo-environment risk assessment technique system combining with the AHP - composite index assessment model is proposed.
* Different types of functional zones in Zhengzhou City are taken as assessment units.
* Geo-environment risk in Zhengzhou City is qualitatively and quantitatively evaluated.Numéro de notice : A2020-565 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475705.2019.1701571 date de publication en ligne : 27/12/2019 En ligne : https://doi.org/10.1080/19475705.2019.1701571 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95890
in Geomatics, Natural Hazards and Risk > vol 11 n° 1 (2020) . - pp 40 - 70[article]A novel deep learning instance segmentation model for automated marine oil spill detection / Shamsudeen Temitope Yekeen in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
PermalinkPermalinkEvaluating techniques for mapping island vegetation from unmanned aerial vehicle (UAV) images: Pixel classification, visual interpretation and machine learning approaches / S.M. Hamylton in International journal of applied Earth observation and geoinformation, vol 89 (July 2020)
PermalinkA web-based spatial decision support system for monitoring the risk of water contamination in private wells / Yu Lan in Annals of GIS, vol 26 n° 3 (July 2020)
PermalinkALERT: adversarial learning with expert regularization using Tikhonov operator for missing band reconstruction / Litu Rout in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
PermalinkMining spatiotemporal association patterns from complex geographic phenomena / Zhanjun He in International journal of geographical information science IJGIS, vol 34 n° 6 (June 2020)
PermalinkYear-to-year crown condition poorly contributes to ring width variations of beech trees in French ICP level I network / Clara Tallieu in Forest ecology and management, Vol 465 (1st June 2020)
PermalinkApplying the environmental sensitivity index for the assessment of the prospective oil spills along the Nile Delta Coast, Egypt / Rasha M. Abou Samra in Geocarto international, vol 35 n° 6 ([01/05/2020])
PermalinkMultiscale Intensity Propagation to Remove Multiplicative Stripe Noise From Remote Sensing Images / Hao Cui in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
PermalinkSpectral Interference of Heavy Metal Contamination on Spectral Signals of Moisture Content for Heavy Metal Contaminated Soils / Haein Shin in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
PermalinkA novel nonlinear hyperspectral unmixing approach for images of oil spills at sea / Ying Li in International Journal of Remote Sensing IJRS, vol 41 n°12 (20 - 30 March 2020)
PermalinkA machine learning approach to detect crude oil contamination in a real scenario using hyperspectral remote sensing / Ran Pelta in International journal of applied Earth observation and geoinformation, vol 82 (October 2019)
PermalinkPressures and threats to nature related to human activities in European urban and suburban forests / Ewa Referowska-Chodak in Forests, vol 10 n° 9 (September 2019)
PermalinkHyperspectral analysis of soil polluted with four types of hydrocarbons / Laura A. Reséndez-Hernández in Geocarto international, vol 34 n° 9 ([15/06/2019])
PermalinkChamps et objets pour mieux représenter les phénomènes dans leur contexte géographique / Anne Ruas in Revue internationale de géomatique, vol 29 n° 2 (avril - juin 2019)
PermalinkAnalysis and modelling of remote sensing reflectance during anoxic crisis in the Thau lagoon using satellite images / Manchun Lei (2019)
PermalinkExploitation of hyperspectral data for assessing vegetation health under exposure to petroleum hydrocarbons / Guillaume Lassalle (2019)
PermalinkPermalinkPermalinkPermalink