Descripteur
Termes descripteurs IGN > sciences naturelles > physique > optique > optique physique > radiométrie > rayonnement électromagnétique > diffusion du rayonnement > rétrodiffusion
rétrodiffusionVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Extraction of sea ice cover by Sentinel-1 SAR based on support vector machine with unsupervised generation of training data / Xiao-Ming Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
![]()
[article]
Titre : Extraction of sea ice cover by Sentinel-1 SAR based on support vector machine with unsupervised generation of training data Type de document : Article/Communication Auteurs : Xiao-Ming Li, Auteur ; Yan Sun, Auteur ; Qiang Zhang, Auteur Année de publication : 2021 Article en page(s) : pp 3040 - 3053 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] Arctique, océan
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] données d'apprentissage
[Termes descripteurs IGN] entropie
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] glace de mer
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] matrice de co-occurrence
[Termes descripteurs IGN] niveau de gris (image)
[Termes descripteurs IGN] polarisation croisée
[Termes descripteurs IGN] rétrodiffusion
[Termes descripteurs IGN] textureRésumé : (auteur) In this article, we focus on developing a novel method to extract sea ice cover (i.e., discrimination/classification of sea ice and open water) using Sentinel-1 (S1) cross-polarization [vertical–horizontal (VH) or horizontal–vertical (HV)] data in extra-wide (EW) swath mode based on the support vector machine (SVM) method. The classification basis includes the S1 radar backscatter and texture features, which are calculated from S1 data using the gray level co-occurrence matrix (GLCM). Different from previous methods where appropriate samples are manually selected to train the SVM to classify sea ice and open water, we proposed a method of unsupervised generation of the training samples based on two GLCM texture features, i.e., entropy and homogeneity, that have contrasting characteristics on sea ice and open water. We eliminate the most uncertainty of selecting training samples in machine learning and achieve automatic classification of sea ice and open water by using S1 EW data. The comparisons based on a few cases show good agreements between the synthetic aperture radar (SAR)-derived sea ice cover using the proposed method and visual inspections, of which the accuracy reaches approximately 90%–95%. Besides this, compared with the analyzed sea ice cover data Ice Mapping System (IMS) based on 728 S1 EW images, the accuracy of the extracted sea ice cover by using S1 data is more than 80%. Numéro de notice : A2021-284 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3007789 date de publication en ligne : 20/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3007789 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97392
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 3040 - 3053[article]Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data / Yaotong Cai in International journal of applied Earth observation and geoinformation, vol 92 (October 2020)
![]()
[article]
Titre : Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data Type de document : Article/Communication Auteurs : Yaotong Cai, Auteur ; Xinyu Li, Auteur ; Meng Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 102164 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] algorithme de généralisation
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] cartographie thématique
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] filtre de déchatoiement
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] modélisation spatio-temporelle
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] prairie
[Termes descripteurs IGN] rétrodiffusion
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] zone humideRésumé : (auteur) Wetland ecosystems have experienced dramatic challenges in the past few decades due to natural and human factors. Wetland maps are essential for the conservation and management of terrestrial ecosystems. This study is to obtain an accurate wetland map using an object-based stacked generalization (Stacking) method on the basis of multi-temporal Sentinel-1 and Sentinel-2 data. Firstly, the Robust Adaptive Spatial Temporal Fusion Model (RASTFM) is used to get time series Sentinel-2 NDVI, from which the vegetation phenology variables are derived by the threshold method. Subsequently, both vertical transmit-vertical receive (VV) and vertical transmit-horizontal receive (VH) polarization backscatters (σ0 VV, σ0 VH) are obtained using the time series Sentinel-1 images. Speckle noise inherent in SAR data, resulting in over-segmentation or under-segmentation, can affect image segmentation and degrade the accuracies of wetland classification. Therefore, we segment Sentinel-2 multispectral images to delineate meaningful objects in this study. Then, in order to reduce data redundancy and computation time, we analyze the optimal feature combination using the Sentinel-2 multispectral images, Sentinel-2 NDVI time series, phenological variables and other vegetation index derived from Sentinel-2 multispectral images, as well as time series Sentinel-1 backscatters at the object level. Finally, the stacked generalization algorithm is utilized to extract the wetland information based on the optimal feature combination in the Dongting Lake wetland. The overall accuracy and Kappa coefficient of the object-based stacked generalization method are 92.46% and 0.92, which are 3.88% and 0.04 higher than that using the pixel-based method. Moreover, the object-based stacked generalization algorithm is superior to single classifiers in classifying vegetation of high heterogeneity areas. Numéro de notice : A2020-748 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2020.102164 date de publication en ligne : 07/06/2020 En ligne : https://doi.org/10.1016/j.jag.2020.102164 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96398
in International journal of applied Earth observation and geoinformation > vol 92 (October 2020) . - n° 102164[article]Deriving a frozen area fraction from Metop ASCAT backscatter based on Sentinel-1 / Helena Bergstedt in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
![]()
[article]
Titre : Deriving a frozen area fraction from Metop ASCAT backscatter based on Sentinel-1 Type de document : Article/Communication Auteurs : Helena Bergstedt, Auteur ; Annett Bartsch, Auteur ; Anton Neureiter, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 6008 - 6019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Autriche
[Termes descripteurs IGN] bande C
[Termes descripteurs IGN] courbe de Pearson
[Termes descripteurs IGN] dégel
[Termes descripteurs IGN] Finlande
[Termes descripteurs IGN] fonte des glaces
[Termes descripteurs IGN] hétérogénéité spatiale
[Termes descripteurs IGN] image MetOp-ASCAT
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] pergélisol
[Termes descripteurs IGN] rétrodiffusion
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] télédétection en hyperfréquence
[Termes descripteurs IGN] température au solRésumé : (auteur) Surface state data derived from spaceborne microwave sensors with suitable temporal sampling are to date only available in low spatial resolution (25–50 km). Current approaches do not adequately resolve spatial heterogeneity in landscape-scale freeze–thaw processes. We propose to derive a frozen fraction instead of binary freeze–thaw information. This introduces the possibility to monitor the gradual freezing and thawing of complex landscapes. Frozen fractions were retrieved from Advanced Scatterometer (ASCAT, C-band) backscatter on a 12.5-km grid for three sites in noncontinuous permafrost areas in northern Finland and the Austrian Alps. To calibrate the retrieval approach, frozen fractions based on Sentinel-1 synthetic aperture radar (SAR, C-band) were derived for all sites and compared to ASCAT backscatter. We found strong relationships for ASCAT backscatter with Sentinel-1 derived frozen fractions (Pearson correlations of −0.85 to −0.96) for the sites in northern Finland and less strong relationships for the Alpine site (Pearson correlations −0.579 and −0.611, including and excluding forested areas). Applying the derived linear relationships, predicted frozen fractions using ASCAT backscatter values showed root mean square error (RMSE) values between 7.26% and 16.87% when compared with Sentinel-1 frozen fractions. The validation of the Sentinel-1 derived freeze–thaw classifications showed high accuracy when compared to in situ near-surface soil temperature (84.7%–94%). Results are discussed with regard to landscape type, differences between spring and autumn, and gridding. This article serves as a proof of concept, showcasing the possibility to derive frozen fraction from coarse spatial resolution scatterometer time series to improve the representation of spatial heterogeneity in landscape-scale surface state. Numéro de notice : A2020-525 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2967364 date de publication en ligne : 13/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2967364 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95702
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6008 - 6019[article]Digital terrain, surface, and canopy height models from InSAR backscatter-height histograms / Gustavo H.X. Shiroma in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
![]()
[article]
Titre : Digital terrain, surface, and canopy height models from InSAR backscatter-height histograms Type de document : Article/Communication Auteurs : Gustavo H.X. Shiroma, Auteur ; Marco Lavalle, Auteur Année de publication : 2020 Article en page(s) : pp 754 - 3777 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes descripteurs IGN] bande L
[Termes descripteurs IGN] décomposition de Gauss
[Termes descripteurs IGN] Gabon
[Termes descripteurs IGN] histogramme
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] interféromètrie par radar à antenne synthétique
[Termes descripteurs IGN] modèle numérique de surface de la canopée
[Termes descripteurs IGN] modèle numérique de terrain
[Termes descripteurs IGN] modélisation 3D
[Termes descripteurs IGN] polarimétrie radar
[Termes descripteurs IGN] rétrodiffusion
[Termes descripteurs IGN] structure de la végétationRésumé : (auteur) This article demonstrates how 3-D vegetation structure can be approximated by interferometric synthetic aperture radar (InSAR) backscatter-height histograms. Single-look backscatter measurements are plotted against the InSAR phase height and are aggregated spatially over a forest patch to form a 3-D histogram, referred to as InSAR backscatter-height histogram or simply InSAR histogram. InSAR histograms resemble LiDAR waveforms, suggesting that existing algorithms used to retrieve canopy height and ground topography from radar tomograms or LiDAR waveforms can be applied to InSAR histograms. Three algorithms are evaluated to generate maps of digital terrain, surface, and canopy height models: Gaussian decomposition, quantile, and backscatter threshold. Full-polarimetric L-band uninhabited aerial vehicle synthetic aperture radar (UAVSAR) data collected over the Gabonese Lopé National Park during the 2016 AfriSAR campaign are used to illustrate and compare the performance of the algorithms for the HH, HV, VV, HH+VV, and HH−VV polarimetric channels. Results show that radar-derived maps using the InSAR histograms differ by 4 m (top-canopy), 5 m (terrain), and 6 m (forest height) in terms of average root-mean-square errors (RMSEs) from standard maps derived from full-waveform laser, vegetation, and ice sensor (LVIS) LiDAR measurements. Numéro de notice : A2020-279 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2956989 date de publication en ligne : 16/01/2020 En ligne : https://doi.org/10.1109/TGRS.2019.2956989 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95099
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020) . - pp 754 - 3777[article]Potential of texture from SAR tomographic images for forest aboveground biomass estimation / Zhanmang Liao in International journal of applied Earth observation and geoinformation, vol 88 (June 2020)
![]()
[article]
Titre : Potential of texture from SAR tomographic images for forest aboveground biomass estimation Type de document : Article/Communication Auteurs : Zhanmang Liao, Auteur ; Binbin He, Auteur ; Xingwen Quan, Auteur Année de publication : 2020 Article en page(s) : 15 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse texturale
[Termes descripteurs IGN] bande P
[Termes descripteurs IGN] biomasse aérienne
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] données TomoSAR
[Termes descripteurs IGN] rétrodiffusion
[Termes descripteurs IGN] tomographie radarRésumé : (auteur) Synthetic Aperture Radar (SAR) texture has been demonstrated to have the potential to improve forest biomass estimation using backscatter. However, forests are 3D objects with a vertical structure. The strong penetration of SAR signals means that each pixel contains the contributions of all the scatterers inside the forest canopy, especially for the P-band. Consequently, the traditional texture derived from SAR images is affected by forest vertical heterogeneity, although the influence on texture-based biomass estimation has not yet been explicitly explored. To separate and explore the influence of forest vertical heterogeneity, we introduced the SAR tomography technique into the traditional texture analysis, aiming to explore whether TomoSAR could improve the performance of texture-based aboveground biomass (AGB) estimation and whether texture plus tomographic backscatter could further improve the TomoSAR-based AGB estimation. Based on the P-band TomoSAR dataset from TropiSAR 2009 at two different sites, the results show that ground backscatter variance dominated the texture features of the original SAR image and reduced the biomass estimation accuracy. The texture from upper vegetation layers presented a stronger correlation with forest biomass. Texture successfully improved tomographic backscatter-based biomass estimation, and the texture from upper vegetation layers made AGB models much more transferable between different sites. In addition, the correlation between texture indices varied greatly among different tomographic heights. The texture from the 10 to 30 m layers was able to provide more independent information than the other layers and the original images, which helped to improve the backscatter-based AGB estimation. Numéro de notice : A2020-447 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2020.102049 date de publication en ligne : 12/02/2020 En ligne : https://doi.org/10.1016/j.jag.2020.102049 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95523
in International journal of applied Earth observation and geoinformation > vol 88 (June 2020) . - 15 p.[article]Wheat leaf area index retrieval using RISAT-1 hybrid polarized SAR data / Thota Sivasankar in Geocarto international, Vol 35 n° 8 ([01/06/2020])
PermalinkIntegration of corner reflectors for the monitoring of mountain glacier areas with Sentinel-1 time series / Matthias Jauvin in Remote sensing, vol 11 n° 8 (August 2019)
PermalinkPermalinkEstimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery / Jose Alan A. Castillo in ISPRS Journal of photogrammetry and remote sensing, vol 134 (December 2017)
PermalinkA time-series approach to estimating soil moisture from vegetated surfaces using L-band radar backscatter / Jeffrey D. Ouellette in IEEE Transactions on geoscience and remote sensing, vol 55 n° 6 (June 2017)
PermalinkMise en place d'une méthode semi-automatique de cartographie de l'occupation des sols à partir d'images SAR polarimétriques / Monique Moine in Revue Française de Photogrammétrie et de Télédétection, n° 215 (mai - août 2017)
PermalinkPassive microwave remote sensing of soil moisture based on dynamic vegetation scattering properties for AMSR-E / Jinyang Du in IEEE Transactions on geoscience and remote sensing, vol 54 n° 1 (January 2016)
PermalinkUnderstanding the effects of ALS pulse density for metric retrieval across diverse forest types / Phil Wilkes in Photogrammetric Engineering & Remote Sensing, PERS, vol 81 n° 8 (August 2015)
PermalinkNon-invasive forest litter characterization using full-wave inversion of microwave radar data / Frédéric André in IEEE Transactions on geoscience and remote sensing, vol 53 n° 2 (February 2015)
PermalinkModelling electrical conductivity of soil from backscattering coefficient of microwave remotely sensed data using artificial neural network / Walaiporn Phonphan in Geocarto international, vol 29 n° 7 - 8 (November - December 2014)
PermalinkMeasurements of forest biomass change using P-Band synthetic aperture radar backscatter / Gustaf Sandberg in IEEE Transactions on geoscience and remote sensing, vol 52 n° 10 tome 1 (October 2014)
PermalinkOn the SAR backscatter of burned forests: a model-based study in C-Band, over burned pine canopies full text / Vasileios kalogirou in IEEE Transactions on geoscience and remote sensing, vol 52 n° 10 tome 1 (October 2014)
PermalinkA novel rapid SAR simulator based on equivalent scatterers for three-dimensional forest canopies / Tao Zeng in IEEE Transactions on geoscience and remote sensing, vol 52 n° 9 Tome 1 (September 2014)
PermalinkBackscattering of individual LiDAR pulses from forest canopies explained by photogrammetrically derived vegetation structure / Ilkka Korpela in ISPRS Journal of photogrammetry and remote sensing, vol 83 (September 2013)
PermalinkRetrieval of tropical forest biomass information from ALOS PALSAR data / Mahmudur Rahman in Geocarto international, vol 28 n° 5-6 (August - October 2013)
PermalinkSoil moisture estimation under low vegetation cover using a multi-angular polarimetric decomposition / Thomas Jaghuber in IEEE Transactions on geoscience and remote sensing, vol 51 n° 4 Tome 2 (April 2013)
PermalinkTesting a near-infrared Lidar mounted with a large incidence angle to monitor the water level of turbid reservoirs / S. Tamari in ISPRS Journal of photogrammetry and remote sensing, vol 66 n° 6 supplement (December 2011)
PermalinkRadar backscatter mapping using TerraSAR-X / P. Rizzoli in IEEE Transactions on geoscience and remote sensing, vol 49 n° 10 Tome 1 (October 2011)
PermalinkEffect of corn on C-an L-band radar backscatter: a correction method for soil moisture retrieval / A. Joseph in Remote sensing of environment, vol 114 n° 11 (15/11/2010)
PermalinkSnow permitivity retrieval inversion algorithm for estimating snow wetness / G. Singh in Geocarto international, vol 25 n° 3 (June 2010)
PermalinkDiscrimination of agricultural crops in a tropical semi-arid region of Brazil based on L-band polarimetric airborne SAR data / W. Silva in ISPRS Journal of photogrammetry and remote sensing, vol 64 n° 5 (September - October 2009)
PermalinkPotentiality of feed-forward neural networks for classifying dark formations to oil spills and look-alikes / K. Topouzelis in Geocarto international, vol 24 n° 3 (June - July 2009)
PermalinkRadiometric calibration of Lidar intensity with commercial available reference targets / S. Kaasalainen in IEEE Transactions on geoscience and remote sensing, vol 47 n° 2 (February 2009)
PermalinkFull-waveform topographic lidar: State-of-the-art / Frédéric Bretar in ISPRS Journal of photogrammetry and remote sensing, vol 64 n° 1 (January - February 2009)
PermalinkRetrieval of surface roughness using multi-polarized Envisat-1 ASAR data / H.s Srivastava in Geocarto international, vol 23 n° 1 (February - March 2008)
PermalinkGaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner / W. Wagner in ISPRS Journal of photogrammetry and remote sensing, vol 60 n° 2 (April 2006)
PermalinkEvaluation of a rough soil surface description with ASAR-ENVISAT radar data / Mehrez Zribi in Remote sensing of environment, vol 95 n° 1 (15/03/2005)
PermalinkDetection of stationary foliage-obscured targets by polarimetric millimeter-wave radar / A.Y. Nashashibi in IEEE Transactions on geoscience and remote sensing, vol 43 n° 1 (January 2005)
PermalinkBidirectional reflectance of Earth targets: evaluation of analytical models using a large set of spaceborne measurements with emphasis on the Hot Spot / F. Maignan in Remote sensing of environment, vol 90 n° 2 (30/03/2004)
PermalinkAssessing the potential of space-borne C-band SAR data for spatial soil moisture information over a large area / S.A. Romshoo in Geocarto international, vol 19 n° 1 (March - May 2004)
PermalinkThe use of fully polarimetric information for the fuzzy neural classification of SAR images / C.T. Chen in IEEE Transactions on geoscience and remote sensing, vol 41 n° 9 (September 2003)
PermalinkMultitemporal repeat-pass SAR interferometry of boreal forests / J. Askne in IEEE Transactions on geoscience and remote sensing, vol 41 n° 7 (July 2003)
PermalinkRemote sensing techniques to assess water quality / J.C. Ritchie in Photogrammetric Engineering & Remote Sensing, PERS, vol 69 n° 6 (June 2003)
PermalinkPotential of reflected intensity of airborne laser scanning systems in roadway features identification / K. Yu in Geomatica, vol 56 n° 4 (December 2002)
PermalinkOn the retrieving of forest stem volume from VHF SAR data: observation and modeling / P. Melon in IEEE Transactions on geoscience and remote sensing, vol 39 n° 11 (November 2001)
PermalinkPermalinkAnalyse des paysages côtiers par signatures radar : expérimentation GlobeSAR / G. Bonnaffoux in Photo interprétation, vol 36 n° 2-3 (Mai 1998)
PermalinkDevelopment of models for monitoring the urban environment using radar remote sensing / Catherine Ticehurst (1998)
PermalinkPerception du relief à partir d'images radar ERS-1 par méthode radarclinométrique sur la Guyane française / P. Vissiere (1994)
PermalinkDétermination du coefficient de rétrodiffusion d'une surface naturelle, calcul de la section efficace du radar de la mer / G. De Kerangal (1993)
PermalinkEtude de la perception de la morphologie en forêt tropicale humide dense (Guyane française) à partir d'images radar SAR-ERS 1 / Michaël Tonon (1993)
PermalinkModélisation et simulation de la rétrodiffusion radar d'une surface naturelle / Pascale Lefort (1992)
PermalinkPermalinkPermalinkA numerical model for radar backscatter from a lossy inhomogeneous layer / H.T. Chuah in International Journal of Remote Sensing IJRS, vol 11 n° 4 (April 1990)
Permalink