Descripteur
Termes IGN > 1- Outils - instruments et méthodes > instrument > instrument de mesure > instrument de mesurage de distances > télémètre
télémètreSynonyme(s)appareil de mesurage de distancesVoir aussi |
Documents disponibles dans cette catégorie (443)



Etendre la recherche sur niveau(x) vers le bas
Comparative use of PPK-integrated close-range terrestrial photogrammetry and a handheld mobile laser scanner in the measurement of forest road surface deformation / Remzi Eker in Measurement, vol 206 (January 2023)
![]()
[article]
Titre : Comparative use of PPK-integrated close-range terrestrial photogrammetry and a handheld mobile laser scanner in the measurement of forest road surface deformation Type de document : Article/Communication Auteurs : Remzi Eker, Auteur Année de publication : 2023 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie terrestre
[Termes IGN] analyse comparative
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] chemin forestier
[Termes IGN] déformation de surface
[Termes IGN] lidar mobile
[Termes IGN] positionnement cinématique
[Termes IGN] semis de points
[Termes IGN] structure-from-motion
[Termes IGN] télémétrie laser terrestre
[Termes IGN] TurquieNuméro de notice : A2023-043 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.measurement.2022.112322 Date de publication en ligne : 14/12/2022 En ligne : https://doi.org/10.1016/j.measurement.2022.112322 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102330
in Measurement > vol 206 (January 2023)[article]A real-time algorithm for continuous navigation in intelligent transportation systems using LiDAR-Gyroscope-Odometer integration / Tarek Hassan in Journal of applied geodesy, vol 17 n° 1 (January 2023)
![]()
[article]
Titre : A real-time algorithm for continuous navigation in intelligent transportation systems using LiDAR-Gyroscope-Odometer integration Type de document : Article/Communication Auteurs : Tarek Hassan, Auteur ; Tamer Fath-Allah, Auteur ; Mohamed Elhabiby, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 65 - 77 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] capteur à balayage
[Termes IGN] centrale inertielle
[Termes IGN] gyroscope
[Termes IGN] lidar mobile
[Termes IGN] odomètre
[Termes IGN] panne
[Termes IGN] positionnement par GNSS
[Termes IGN] système de transport intelligent
[Termes IGN] temps réel
[Termes IGN] véhicule automobile
[Termes IGN] zone urbaineRésumé : (auteur) Real-time positioning in suburban and urban environments has been a challenging task for many Intelligent Transportation Systems (ITS) applications. In these environments, positioning using Global Navigation Satellite Systems (GNSS) cannot provide continuous solutions due to the blockage of signals in harsh scenarios. Consequently, it is intrinsic to have an independent positioning system capable of providing accurate and reliable positional solutions over GNSS outages. This study exploits the integration of Light Detection and Ranging (LiDAR), gyroscope, and odometer sensors, and a novel real-time algorithm is proposed for this integration. Real field data, collected by a moving land vehicle, is used to test the presented algorithm. Three simulated GNSS outages are introduced in the trajectory such that each outage lasts for five minutes. The results show that using the proposed algorithm can achieve a promising navigation performance in urban environments. In addition, it is shown that the denser environments, that existed over the second and third outages, can provide better positioning accuracies as more features are extracted. The horizontal errors over the first outage, with less density of surroundings, reached 7.74 m (0.43%) error with a mean value of 3.15 m. Moreover, the horizontal errors in the denser environments over the second and third outages reached 4.97 m (0.28%) and 3.99 m (0.23%), with mean values of 2.25 m and 1.89 m, respectively. Numéro de notice : A2023-110 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1515/jag-2022-0022 Date de publication en ligne : 28/11/2022 En ligne : https://doi.org/10.1515/jag-2022-0022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102469
in Journal of applied geodesy > vol 17 n° 1 (January 2023) . - pp 65 - 77[article]Semantic segmentation of bridge components and road infrastructure from mobile LiDAR data / Yi-Chun Lin in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 6 (December 2022)
![]()
[article]
Titre : Semantic segmentation of bridge components and road infrastructure from mobile LiDAR data Type de document : Article/Communication Auteurs : Yi-Chun Lin, Auteur ; Ayman Habib, Auteur Année de publication : 2022 Article en page(s) : n° 100023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] autoroute
[Termes IGN] couplage GNSS-INS
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] lidar mobile
[Termes IGN] pont
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau routier
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (auteur) Emerging mobile LiDAR mapping systems exhibit great potential as an alternative for mapping urban environments. Such systems can acquire high-quality, dense point clouds that capture detailed information over an area of interest through efficient field surveys. However, automatically recognizing and semantically segmenting different components from the point clouds with efficiency and high accuracy remains a challenge. Towards this end, this study proposes a semantic segmentation framework to simultaneously classify bridge components and road infrastructure using mobile LiDAR point clouds while providing the following contributions: 1) a deep learning approach exploiting graph convolutions is adopted for point cloud semantic segmentation; 2) cross-labeling and transfer learning techniques are developed to reduce the need for manual annotation; and 3) geometric quality control strategies are proposed to refine the semantic segmentation results. The proposed framework is evaluated using data from two mobile mapping systems along an interstate highway with 27 highway bridges. With the help of the proposed cross-labeling and transfer learning strategies, the deep learning model achieves an overall accuracy of 84% using limited training data. Moreover, the effectiveness of the proposed framework is verified through test covering approximately 42 miles along the interstate highway, where substantial improvement after quality control can be observed. Numéro de notice : A2022-814 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.ophoto.2022.100023 Date de publication en ligne : 24/10/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101975
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 6 (December 2022) . - n° 100023[article]Modelling forest volume with small area estimation of forest inventory using GEDI footprints as auxiliary information / Shaohui Zhang in International journal of applied Earth observation and geoinformation, vol 114 (November 2022)
![]()
[article]
Titre : Modelling forest volume with small area estimation of forest inventory using GEDI footprints as auxiliary information Type de document : Article/Communication Auteurs : Shaohui Zhang, Auteur ; Cédric Vega , Auteur ; Christine Deleuze, Auteur ; Sylvie Durrieu, Auteur ; Pierre Barbillon, Auteur ; Olivier Bouriaud
, Auteur ; Jean-Pierre Renaud, Auteur
Année de publication : 2022 Article en page(s) : n° 103072 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] données lidar
[Termes IGN] empreinte
[Termes IGN] gestion forestière
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier local
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] modèle numérique de terrain
[Termes IGN] modélisation de la forêt
[Termes IGN] placette d'échantillonnage
[Termes IGN] Sologne (France)
[Termes IGN] variogramme
[Termes IGN] volume en boisRésumé : (auteur) The French National Forest Inventory provides detailed forest information up to large national and regional scales. Forest inventory for small areas of interest within a large population is equally important for decision making, such as for local forest planning and management purposes. However, sampling these small areas with sufficient ground plots is often not cost efficient. In response, small area estimation has gained increasing popularity in forest inventory. It consists of a set of techniques that enables predictions of forest attributes of subpopulation with the help of auxiliary information that compensates for the small field samples. Common sources of auxiliary information usually come from remote sensing technology, such as airborne laser scanning and satellite imagery. The newly launched NASA’s Global Ecosystem Dynamics Investigation (GEDI), a full waveform Lidar instrument, provides an unprecedented opportunity of collecting large-scale and dense forest sample plots given its sampling frequency and spatial coverage. However, the geolocation uncertainty associated with GEDI footprints create important challenges for their use for small area estimations. In this study, we designed a process that provides NFI measurements at plot level with GEDI auxiliary information from nearby footprints. We demonstrated that GEDI RH98 is equivalent to NFI dominant height at plot level. We stressed the importance of pairing NFI plots with nearby GEDI footprints, based on not only the distance in between but also their similarities, i.e., forest heights and forest types. Subsequently, these NFI-GEDI pairs were used for small area estimations following a two-phase sampling scheme. We showcased that, with an adequate sample size, small area estimation with GEDI auxiliary data can improve the accuracy of forest volume estimates. Numéro de notice : A2022-786 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2022.103072 Date de publication en ligne : 22/10/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103072 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101890
in International journal of applied Earth observation and geoinformation > vol 114 (November 2022) . - n° 103072[article]Benchmarking laser scanning and terrestrial photogrammetry to extract forest inventory parameters in a complex temperate forest / Daniel Kükenbrink in International journal of applied Earth observation and geoinformation, vol 113 (September 2022)
![]()
[article]
Titre : Benchmarking laser scanning and terrestrial photogrammetry to extract forest inventory parameters in a complex temperate forest Type de document : Article/Communication Auteurs : Daniel Kükenbrink, Auteur ; Mauro Marty, Auteur ; Ruedi Bösch, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102999 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] caméra à bas coût
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] détection d'arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt tempérée
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] lidar mobile
[Termes IGN] lidar topographique
[Termes IGN] photogrammétrie terrestre
[Termes IGN] semis de points
[Termes IGN] série temporelle
[Termes IGN] structure-from-motion
[Termes IGN] Zurich (Suisse)Résumé : (auteur) National forest inventories (NFI) are important for the assessment of the state and development of forests. Traditional NFIs often rely on statistical sampling approaches as well as expert assessment which may suffer from observer bias and may lack robustness for time series analysis. Over the course of the last decade, close-range remote sensing techniques such as terrestrial and mobile laser scanning became ever more established for the assessment of three-dimensional (3D) forest structure. With the ongoing trend to make the systems smaller, easier to use and more efficient, the pathway is being opened for an operational inclusion of such devices within the framework of an NFI to support the traditional field assessment. Close-range remote sensing could potentially speed up field inventory work as well as increase the area in which certain parameters are assessed. Benchmarks are needed to evaluate the performance of different close-range remote sensing devices and approaches, both in terms of efficiency as well as accuracy. In this study we evaluate the performance of two terrestrial (TLS), one handheld mobile (PLS) and two drone based (UAVLS) laser scanning systems to detect trees and extract the diameter at breast height (DBH) in three plots with a steep gradient in tree and understorey vegetation density. As a novelty, we also tested the acquisition of 3D point-clouds using a low-cost action camera (GoPro) in conjunction with the Structure from Motion (SfM) technique and compared its performance with those of the more costly LiDAR devices. Among the many parameters evaluated in traditional NFIs, the focus of the performance evaluation of this study is set on the automatic tree detection and DBH extraction. The results showed that TLS delivers the highest tree detection rate (TDR) of up to 94.6% under leaf-off and up to 82% under leaf-on conditions and a relative RMSE (rRMSE) for the DBH extraction between 2.5 and 9%, depending on the undergrowth complexity. The tested PLS system (leaf-on) achieved a TDR of up to 80% with an rRMSE between 3.7 and 5.8%. The tested UAVLS systems showed lowest TDR of less than 77% under leaf-off and less than 37% under leaf-on conditions. The novel GoPro approach achieved a TDR of up to 53% under leaf-on conditions. The reduced TDR can be explained by the reduced area coverage due to the chosen circular acquisition path taken with the GoPro approach. The DBH extraction performance on the other hand is comparable to those of the LiDAR devices with an rRMSE between 2 and 9%. Further benchmarks are needed in order to fully assess the applicability of these systems in the framework of an NFI. Especially the robustness under varying forest conditions (seasonality) and over a broader range of forest types and canopy structure has to be evaluated. Numéro de notice : A2022-787 Affiliation des auteurs : IGN (1940-2011) Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102999 Date de publication en ligne : 05/09/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102999 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101893
in International journal of applied Earth observation and geoinformation > vol 113 (September 2022) . - n° 102999[article]Using multi-temporal tree inventory data in eucalypt forestry to benchmark global high-resolution canopy height models. A showcase in Mato Grosso, Brazil / Adrián Pascual in Ecological Informatics, vol 70 (September 2022)
PermalinkFull-waveform classification and segmentation-based signal detection of single-wavelength bathymetric LiDAR / Xue Ji in IEEE Transactions on geoscience and remote sensing, vol 60 n° 8 (August 2022)
PermalinkAdvancements in underground mine surveys by using SLAM-enabled handheld laser scanners / Artu Ellmann in Survey review, vol 54 n° 385 (July 2022)
PermalinkHow can Sentinel-2 contribute to seagrass mapping in shallow, turbid Baltic Sea waters? / Katja Kuhwald in Remote sensing in ecology and conservation, vol 8 n° 3 (June 2022)
PermalinkIndividual tree detection and estimation of stem attributes with mobile laser scanning along boreal forest roads / Raul de Paula Pires in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)
PermalinkAssessing surface drainage conditions at the street and neighborhood scale: A computer vision and flow direction method applied to lidar data / Cheng-Chun Lee in Computers, Environment and Urban Systems, vol 93 (April 2022)
PermalinkPolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data / Qi Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)
PermalinkDevelopment of a single-wavelength airborne bathymetric LiDAR: System design and data processing / Kai Guo in ISPRS Journal of photogrammetry and remote sensing, vol 185 (March 2022)
PermalinkTraffic sign three-dimensional reconstruction based on point clouds and panoramic images / Minye Wang in Photogrammetric record, vol 37 n° 177 (March 2022)
Permalink3D stem modelling in tropical forest: towards improved biomass and biomass change estimates / Sébastien Bauwens (2022)
Permalink