Descripteur
Termes IGN > 1- Outils - instruments et méthodes > instrument > instrument de mesure > instrument de mesurage de distances > télémètre
télémètreSynonyme(s)appareil de mesurage de distancesVoir aussi |
Documents disponibles dans cette catégorie (443)



Etendre la recherche sur niveau(x) vers le bas
Unsupervised semantic and instance segmentation of forest point clouds / Di Wang in ISPRS Journal of photogrammetry and remote sensing, vol 165 (July 2020)
![]()
[article]
Titre : Unsupervised semantic and instance segmentation of forest point clouds Type de document : Article/Communication Auteurs : Di Wang, Auteur Année de publication : 2020 Article en page(s) : pp 86 - 97 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de groupement
[Termes IGN] classification non dirigée
[Termes IGN] données lidar
[Termes IGN] hauteur des arbres
[Termes IGN] houppier
[Termes IGN] indice foliaire
[Termes IGN] interprétation automatique
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] télémètre laser terrestreRésumé : (auteur) Terrestrial Laser Scanning (TLS) has been increasingly used in forestry applications including forest inventory and plant ecology. Tree biophysical properties such as leaf area distributions and wood volumes can be accurately estimated from TLS point clouds. In these applications, a prerequisite is to properly understand the information content of large scale point clouds (i.e., semantic labelling of point clouds), so that tree-scale attributes can be retrieved. Currently, this requirement is undergoing laborious and time consuming manual works. In this work, we jointly address the problems of semantic and instance segmentation of forest point clouds. Specifically, we propose an unsupervised pipeline based on a structure called superpoint graph, to simultaneously perform two tasks: single tree isolation and leaf-wood classification. The proposed method is free from restricted assumptions of forest types. Validation using simulated data resulted in a mean Intersection over Union (mIoU) of 0.81 for single tree isolation, and an overall accuracy of 87.7% for leaf-wood classification. The single tree isolation led to a relative root mean square error (RMSE%) of 2.9% and 19.8% for tree height and crown diameter estimations, respectively. Comparisons with existing methods on other benchmark datasets showed state-of-the-art results of our method on both single tree isolation and leaf-wood classification tasks. We provide the entire framework as an open-source tool with an end-user interface. This study closes the gap for using TLS point clouds to quantify tree-scale properties in large areas, where automatic interpretation of the information content of TLS point clouds remains a crucial challenge. Numéro de notice : A2020-347 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.020 Date de publication en ligne : 28/05/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.020 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95228
in ISPRS Journal of photogrammetry and remote sensing > vol 165 (July 2020) . - pp 86 - 97[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020071 RAB Revue Centre de documentation En réserve 3L Disponible 081-2020073 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2020072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Monitoring clearcutting and subsequent rapid recovery in Mediterranean coppice forests with Landsat time series / Gherardo Chirici in Annals of Forest Science, Vol 77 n° 2 (June 2020)
![]()
[article]
Titre : Monitoring clearcutting and subsequent rapid recovery in Mediterranean coppice forests with Landsat time series Type de document : Article/Communication Auteurs : Gherardo Chirici, Auteur ; Francesca Giannetti, Auteur ; Erica Mazza, Auteur ; et al., Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] brûlis
[Termes IGN] canopée
[Termes IGN] coupe rase (sylviculture)
[Termes IGN] dégradation du signal
[Termes IGN] forêt méditerranéenne
[Termes IGN] image Landsat
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] reconstruction du signal
[Termes IGN] régénération (sylviculture)
[Termes IGN] série temporelle
[Termes IGN] taillis
[Termes IGN] télémètre laser aéroportéRésumé : (auteur) Key message: This work analyses the rate of recovery of the spectral signal from clearcut areas of coppice Mediterranean forests using Landsat Time Series (LTS). The analysis revealed a more rapid rate of spectral signal recovery than what was found in previous investigations in boreal and temperate forests. Context: The rate of post-disturbance vegetation recovery is an important component of forest dynamics. Aims: In this study, we analyze the recovery of the spectral signal from forest clearcut areas in Mediterranean conditions when the coppice system of forest management is applied. Methods:
We used LTS surface reflectance data (1999–2015). We generated an annual reference database of clearcuts using visual interpretation and local forest inventory data, and then derived the Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio (NBR) spectral trajectories for these clearcuts. From these spectral trajectories, we calculated the Years to Recovery or Y2R, the number of years it takes for a pixel to return to within a specified threshold (i.e., 70%, 80%, 90%, 100%) of its pre-disturbance value. Spectral recovery rates were then corroborated using measures of canopy height derived from airborne laser scanning (ALS) data. Results: The coppice system is associated with rapid recovery rates when compared to rates of recovery from seeds or seedlings in temperate and boreal forest conditions. We found that the Y2R derived from the spectral trajectories of post-clearcut NBR and NDVI provided similar characterizations of rapid recovery for the coppice system of forest management applied in our study area. The ALS measures of canopy height indicated that the Y2R metric accurately captured the rapid regeneration of coppice systems. Conclusion: The rapid rate of spectral recovery associated with the coppice system is 2–4 years, which contrasts with values reported in boreal and temperate forest environments, where spectral recovery was attained in approximately 10 years. NBR is an effective index for assessing rapid recovery in this forest system.Numéro de notice : A2020-293 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-020-00936-2 Date de publication en ligne : 15/04/2020 En ligne : https://doi.org/10.1007/s13595-020-00936-2 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95123
in Annals of Forest Science > Vol 77 n° 2 (June 2020)[article]Under-canopy UAV laser scanning for accurate forest field measurements / Eric Hyyppä in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)
![]()
[article]
Titre : Under-canopy UAV laser scanning for accurate forest field measurements Type de document : Article/Communication Auteurs : Eric Hyyppä, Auteur ; Juha Hyyppä, Auteur ; Teemu Hakala, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 41 - 60 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] balayage laser
[Termes IGN] canopée
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] densité du bois
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] erreur moyenne quadratique
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] hauteur à la base du houppier
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] inventaire forestier local
[Termes IGN] modèle de croissance végétale
[Termes IGN] semis de points
[Termes IGN] télédétection aérienne
[Termes IGN] télémètre laser terrestre
[Termes IGN] télémétrie laser aéroporté
[Termes IGN] troncRésumé : (auteur) Surveying and robotic technologies are converging, offering great potential for robotic-assisted data collection and support for labour intensive surveying activities. From a forest monitoring perspective, there are several technological and operational aspects to address concerning under-canopy flying unmanned airborne vehicles (UAV). To demonstrate this emerging technology, we investigated tree detection and stem curve estimation using laser scanning data obtained with an under-canopy flying UAV. To this end, we mounted a Kaarta Stencil-1 laser scanner with an integrated simultaneous localization and mapping (SLAM) system on board an UAV that was manually piloted with the help of video goggles receiving a live video feed from the onboard camera of the UAV. Using the under-canopy flying UAV, we collected SLAM-corrected point cloud data in a boreal forest on two 32 m 32 m test sites that were characterized as sparse ( = 42 trees) and obstructed ( = 43 trees), respectively. Novel data processing algorithms were applied for the point clouds in order to detect the stems of individual trees and to extract their stem curves and diameters at breast height (DBH). The estimated tree attributes were compared against highly accurate field reference data that was acquired semi-manually with a multi-scan terrestrial laser scanner (TLS). The proposed method succeeded in detecting 93% of the stems in the sparse plot and 84% of the stems in the obstructed plot. In the sparse plot, the DBH and stem curve estimates had a root-mean-squared error (RMSE) of 0.60 cm (2.2%) and 1.2 cm (5.0%), respectively, whereas the corresponding values for the obstructed plot were 0.92 cm (3.1%) and 1.4 cm (5.2%). By combining the stem curves extracted from the under-canopy UAV laser scanning data with tree heights derived from above-canopy UAV laser scanning data, we computed stem volumes for the detected trees with a relative RMSE of 10.1% in both plots. Thus, the combination of under-canopy and above-canopy UAV laser scanning allowed us to extract the stem volumes with an accuracy comparable to the past best studies based on TLS in boreal forest conditions. Since the stems of several spruces located on the test sites suffered from severe occlusion and could not be detected with the stem-based method, we developed a separate work flow capable of detecting trees with occluded stems. The proposed work flow enabled us to detect 98% of trees in the sparse plot and 93% of the trees in the obstructed plot with a 100% correction level in both plots. A key benefit provided by the under-canopy UAV laser scanner is the short period of time required for data collection, currently demonstrated to be much faster than the time required for field measurements and TLS. The quality of the measurements acquired with the under-canopy flying UAV combined with the demonstrated efficiency indicates operational potential for supporting fast and accurate forest resource inventories. Numéro de notice : A2020-240 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.03.021 Date de publication en ligne : 11/04/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.03.021 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94994
in ISPRS Journal of photogrammetry and remote sensing > vol 164 (June 2020) . - pp 41 - 60[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020061 RAB Revue Centre de documentation En réserve 3L Disponible 081-2020063 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2020062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Filtering of airborne LiDAR bathymetry based on bidirectional cloth simulation / Anxiu Yang in ISPRS Journal of photogrammetry and remote sensing, vol 163 (May 2020)
![]()
[article]
Titre : Filtering of airborne LiDAR bathymetry based on bidirectional cloth simulation Type de document : Article/Communication Auteurs : Anxiu Yang, Auteur ; Fanlin Yang, Auteur ; Dianpeng Su, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 49 - 61 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] ajustement de paramètres
[Termes IGN] Chine
[Termes IGN] courbe de Gauss
[Termes IGN] données lidar
[Termes IGN] filtrage de points
[Termes IGN] itération
[Termes IGN] lidar bathymétrique
[Termes IGN] relief sous-marin
[Termes IGN] semis de points
[Termes IGN] télémétrie laser aéroportéRésumé : (auteur) Current filtering methods of airborne LiDAR bathymetry (ALB) point clouds cannot identify negative anomalies or avoid over-filtering of the data. To overcome these problems, we propose a bidirectional cloth simulation filtering (BCSF) method and verify it using captured data. First, a transfer iterative trend surface is established to eliminate the negative anomalies and realize the continuous expression of the seafloor topography. The terrain complexities of the seafloor points are calculated using four extracted feature factors: slope, standard deviation of depth, Gaussian curvature, and roughness. We then calculate the sub-regional terrain complexity and the adaptive distance threshold and obtain user-defined parameters. Finally, sub-regional filtering is carried out, and a filtered surface is established to solve the over-filtering problem of convex and concave seafloor topographies based on the BCSF correction model. To evaluate the performance of the proposed method, the BCSF method was applied to ALB data captured around Yuanzhi Island in the South China Sea. The experimental results show that the BCSF method effectively filters out non-seafloor points and fully preserves the seafloor microtopography to realize the integrity of the seafloor topography. The proposed BCSF method outperforms the cloth simulation filtering method in terms of the elimination rate, which decreases from 38.78% to 2.52% and from 29.52% to 0.70% in the whole study area and local study area, respectively. Consequently, the BCSF method that combines forward filtering with inverse filtering exhibits complementary advantages, avoids over-filtering, and demonstrates strong adaptability and robustness for ALB data. Numéro de notice : A2020-137 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.03.004 Date de publication en ligne : 09/03/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.03.004 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94755
in ISPRS Journal of photogrammetry and remote sensing > vol 163 (May 2020) . - pp 49 - 61[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020051 RAB Revue Centre de documentation En réserve 3L Disponible 081-2020053 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2020052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt How far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study / Enrico Borgogno Mondino in International Journal of Remote Sensing IJRS, vol 41 n° 12 (20 - 30 March 2020)
![]()
[article]
Titre : How far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study Type de document : Article/Communication Auteurs : Enrico Borgogno Mondino, Auteur ; Vanina Fissore, Auteur ; Michael J. Falkowski, Auteur ; Brian Palik, Auteur Année de publication : 2020 Article en page(s) : pp 4551 - 4569 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] auscultation topographique
[Termes IGN] diamètre des arbres
[Termes IGN] données dendrométriques
[Termes IGN] données lidar
[Termes IGN] feuillu
[Termes IGN] hauteur des arbres
[Termes IGN] image Landsat-OLI
[Termes IGN] inventaire forestier local
[Termes IGN] Minnesota (Etats-Unis)
[Termes IGN] modèle d'erreur
[Termes IGN] Pinophyta
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] surface forestière
[Termes IGN] télémètre laser aéroportéRésumé : (auteur) Aerial discrete return LiDAR (Light Detection And Ranging) technology (ALS – Aerial Laser Scanner) is now widely used for forest characterization due to its high accuracy in measuring vertical and horizontal forest structure. Random and systematic errors can still occur and these affect the native point cloud, ultimately degrading ALS data accuracy, especially when adopting datasets that were not natively designed for forest applications. A detailed understanding of how uncertainty of ALS data could affect the accuracy of derivable forest metrics (e.g. tree height, stem diameter, basal area) is required, looking for eventual error biases that can be possibly modelled to improve final accuracy. In this work a low-density ALS dataset, originally acquired by the State of Minnesota (USA) for non-forestry related purposes (i.e. topographic mapping), was processed attempting to characterize forest inventory parameters for the Cutfoot Sioux Experimental Forest (north-central Minnesota, USA). Since accuracy of estimates strictly depends on the applied species-specific dendrometric models a first required step was to map tree species over the forest. A rough classification, aiming at separating conifers from broadleaf, was achieved by processing a Landsat 8 OLI (Operational Land Imager) scene. ALS-derived forest metrics initially greatly overestimated those measured at the ground in 230 plots. Conversely, ALS-derived tree density was greatly underestimated. To reduce ALS uncertainty, trees belonging to the dominated plane were removed from the ground dataset, assuming that they could not properly be detected by low-density ALS measures. Consequently, MAE (Mean Absolute Error) values significantly decreased to 4.0 m for tree height and to 0.19 cm for diameter estimates. Remaining discrepancies were related to a bias affecting the native ALS point cloud, which was modelled and removed. Final MAE values were 1.32 m for tree height, 0.08 m for diameter, 8.5 m2 ha−1 for basal area, and 0.06 m for quadratic mean diameter. Specifically focusing on tree height and diameter estimates, the significance of differences between ground and ALS estimates was tested relative to the expected ‘best accuracy’. Results showed that after correction: 94.35% of tree height differences were lower than the corresponding reference value (2.86 m); 70% of tree diameter differences were lower than the corresponding reference value (4.5 cm for conifers and 6.8 cm for broadleaf). Finally, forest parameters were computed for the whole Cutfoot Sioux Experimental Forest. Main findings include: 1) all forest estimates based on a low-density ALS point cloud can be derived at plot level and not at a tree level; 2) tree height estimates obtained by low-density ALS point clouds at the plot level are highly reasonably accurate only after testing and modelling eventual error bias; 3) diameter, basal area, and quadratic mean diameter estimates have large uncertainties, suggesting the need for a higher point density and, probably, a better mapping of tree species (if possible) than achieved with a remote sensing-based approach. Numéro de notice : A2020-450 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431161.2020.1723173 Date de publication en ligne : 20/02/2020 En ligne : https://doi.org/10.1080/01431161.2020.1723173 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95535
in International Journal of Remote Sensing IJRS > vol 41 n° 12 (20 - 30 March 2020) . - pp 4551 - 4569[article]Assessment of salt marsh change on Assateague Island National Seashore between 1962 and 2016 / Anthony Campbell in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)
PermalinkHierarchical classification of pole‐like objects in mobile laser scanning point clouds / Rufei Liu in Photogrammetric record, vol 35 n° 169 (March 2020)
PermalinkAutomated extraction of lane markings from mobile LiDAR point clouds based on fuzzy inference / Heidar Rastiveis in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
PermalinkPermalinkMise en place d'une méthode de détermination de la hauteur d'eau des océans à partir d'un capteur LiDAR aéroporté dans le cadre de la calibration/validation de l'altimètre SWOT / Romain Serthelon (2020)
PermalinkRelevés par Lidar mobile de cours d’eau et intégration des profils aux relevés bathymétriques réalisés par sondeur mono-faisceau / Guillaume Didier (2020)
PermalinkStreambank topography: an accuracy assessment of UAV-based and traditional 3D reconstructions / Benjamin U. Meinen in International Journal of Remote Sensing IJRS, vol 41 n° 1 (01 - 08 janvier 2020)
PermalinksUAS-based remote rensing of river discharge using thermal particle image velocimetry and bathymetric lidar / Paul J. Kinzel in Remote sensing, vol 11 n° 19 (October-1 2019)
PermalinkQuarante ans après ! Equipements et méthodes en topographie / Paul Courbon in XYZ, n° 160 (septembre 2019)
PermalinkAutomatic extraction of accurate 3D tie points for trajectory adjustment of mobile laser scanners using aerial imagery / Zille Hussnain in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
Permalink