Descripteur
Termes descripteurs IGN > géomatique > données localisées > données localisées numériques > données laser > données lidar
données lidarSynonyme(s)levé par lidarVoir aussi |


Etendre la recherche sur niveau(x) vers le bas
An innovative and automated method for characterizing wood defects on trunk surfaces using high-density 3D terrestrial LiDAR data / Van-Tho Nguyen in Annals of Forest Science [en ligne], vol 78 n° 2 (June 2021)
![]()
[article]
Titre : An innovative and automated method for characterizing wood defects on trunk surfaces using high-density 3D terrestrial LiDAR data Type de document : Article/Communication Auteurs : Van-Tho Nguyen, Auteur ; Thiéry Constant, Auteur ; Francis Colin, Auteur Année de publication : 2021 Article en page(s) : Article 32 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] détection d'anomalie
[Termes descripteurs IGN] données de terrain
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] écorce
[Termes descripteurs IGN] Fagus sylvatica
[Termes descripteurs IGN] qualité du bois
[Termes descripteurs IGN] quercus sessiliflora
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] télémétrie laser terrestre
[Termes descripteurs IGN] troncRésumé : (Auteur) We designed a novel method allowing to automatically detect and measure defects on the surface of trunks including branches, branch scars, and epicormics from terrestrial LiDAR data by using only high-density 3D information. We could automatically detect and measure the defects with a diameter as small as 0.5 cm on either oak (Quercus petraea (Matt.) Liebl.) or beech (Fagus sylvatica L.) trees that display either rough or smooth bark. Numéro de notice : A2021-326 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-020-01022-3 date de publication en ligne : 01/04/2021 En ligne : https://doi.org/10.1007/s13595-020-01022-3 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97484
in Annals of Forest Science [en ligne] > vol 78 n° 2 (June 2021) . - Article 32[article]Sensitivity of voxel-based estimations of leaf area density with terrestrial LiDAR to vegetation structure and sampling limitations: A simulation experiment / Maxime Soma in Remote sensing of environment, vol 257 (May 2021)
![]()
[article]
Titre : Sensitivity of voxel-based estimations of leaf area density with terrestrial LiDAR to vegetation structure and sampling limitations: A simulation experiment Type de document : Article/Communication Auteurs : Maxime Soma, Auteur ; François Pimont, Auteur ; Jean-Luc Dupuy, Auteur Année de publication : 2021 Article en page(s) : n° 112354 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] analyse de sensibilité
[Termes descripteurs IGN] densité du feuillage
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] Leaf Area Index
[Termes descripteurs IGN] Leaf Mass per Area
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] structure de la végétation
[Termes descripteurs IGN] voxelRésumé : (auteur) The need for fine scale description of vegetation structure is increasing as Leaf Area Density (LAD, m2/m3) becomes a critical parameter to understand ecosystem functioning and energy and mass fluxes in heterogeneous ecosystems. Terrestrial Laser Scanning (TLS) has shown great potential for retrieving the foliage area at stand, plant or voxel scales. Several sources of measurement errors have been identified and corrected over the past years. However, measurements remain sensitive to several factors, including, 1) voxel size and vegetation structure within voxels, 2) heterogeneity in sampling from TLS instrument (occlusion and shooting pattern), the consequences of which have been seldom analyzed at the scale of forest plots. In the present paper, we aimed at disentangling biases and errors in plot-scale measurements of LAD with TLS in a simulated vegetation scene. Two negative biases were formerly attributed to (i) the unsampled voxels and to (ii) the subgrid vegetation heterogeneity (i.e. clumping effect), and then quantified, thanks to a the simulation experiment providing known LAD references at voxel scale, vegetation manipulations and unbiased point estimators. We used confidence intervals to evaluate voxel-scale measurement accuracy. Numéro de notice : A2021-278 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112354 date de publication en ligne : 18/02/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112354 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97371
in Remote sensing of environment > vol 257 (May 2021) . - n° 112354[article]An iterative-mode scan design of terrestrial laser scanning in forests for minimizing occlusion effects / Linyuan Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
![]()
[article]
Titre : An iterative-mode scan design of terrestrial laser scanning in forests for minimizing occlusion effects Type de document : Article/Communication Auteurs : Linyuan Li, Auteur ; Xihan Mu, Auteur ; Maxime Soma, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 3547 - 3566 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] détection de partie cachée
[Termes descripteurs IGN] diamètre à hauteur de poitrine
[Termes descripteurs IGN] données de terrain
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] hauteur des arbres
[Termes descripteurs IGN] houppier
[Termes descripteurs IGN] itération
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) Occlusion effect, an inherent problem of terrestrial laser scanning (TLS) measurements, limits the potential of TLS data in tree attribute estimation. Multiple scans seek to mitigate this effect to provide enhanced scan completeness. However, the numbers and locations of the scans (i.e., the scan design) are usually determined via a subjective assessment of the tree density, spatial patterns of trees, and attributes to be derived. These could cause suboptimal scan completeness and limit tree attribute estimation. This study proposed an iterative-mode scan design to minimize the occlusion effect. First, we introduced a PoTo index based on visibility analysis to evaluate how many trees can be scanned from a location and to select effective candidates for the optimal TLS location. Second, we introduced a cumulative degree of ring closure (CDRC) to quantify the scan completeness for each candidate and determine the optimal TLS location. The TLS data sets of virtual forests with field-measured and synthetic plot parameter settings were simulated according to iterative- and regular-mode designs by using a Heidelberg light detection and ranging (LiDAR) Operations Simulator (HELIOS). The results demonstrated that an iterative-mode design can improve the scan completeness of trees compared to the regular-mode design. The tree attribute (diameter at breast height (DBH), tree height, stem curve, and crown volume) estimates of the iterative-mode design were less erroneous than those of the regular-mode design (e.g., the root-mean-square error (RMSE) could decrease the stem curve estimation by 38% and the crown volume estimation by 15%). This study suggests that the iterative-mode design can obtain an improved quality of the TLS data, especially for dense stands. Numéro de notice : A2021-288 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3018643 date de publication en ligne : 10/09/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3018643 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97397
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 3547 - 3566[article]Automated street tree inventory using mobile LiDAR point clouds based on Hough transform and active contours / Amir Hossein Safaie in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)
![]()
[article]
Titre : Automated street tree inventory using mobile LiDAR point clouds based on Hough transform and active contours Type de document : Article/Communication Auteurs : Amir Hossein Safaie, Auteur ; Heidar Rastiveis, Auteur ; Alireza Shams, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 19 - 34 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] arbre remarquable
[Termes descripteurs IGN] arbre urbain
[Termes descripteurs IGN] détection d'arbres
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] inventaire forestier (techniques et méthodes)
[Termes descripteurs IGN] sécurité routière
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] tessellation
[Termes descripteurs IGN] transformation de HoughRésumé : (auteur) Trees are important road-side objects, and their geometric information plays an essential role in road studies and safety analyses. This paper proposes an efficient method for the automated creation of a road-side tree inventory using Mobile Terrestrial Lidar System (MTLS) point clouds. In the proposed method ground points are filtered through preprocessing to reduce processing time. Next, tree trunks are detected by performing a Hough Transform (HT) algorithm on several generated raster images from the point clouds. By initiating an approximate area of a tree’s foliage through a Voronoi Tessellation (VT) algorithm, the accurate boundary of the foliage is identified by applying Active Contour (AC) models. By extracting the points within this foliage boundary the geometric characteristics of each tree are obtained. This method was evaluated with two sample point clouds from different MTLS systems, and the algorithm correctly extracted all of the trees from both datasets. Additionally, comparing the calculated parameters with manually observed measures, the accuracy of the obtained geometric parameters were promising. Numéro de notice : A2021-206 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.026 date de publication en ligne : 14/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.026 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97183
in ISPRS Journal of photogrammetry and remote sensing > vol 174 (April 2021) . - pp 19 - 34[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021041 SL Revue Centre de documentation Revues en salle Disponible 081-2021043 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2021042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Tree extraction and estimation of walnut structure parameters using airborne LiDAR data / Javier Estornell in International journal of applied Earth observation and geoinformation, vol 96 (April 2021)
![]()
[article]
Titre : Tree extraction and estimation of walnut structure parameters using airborne LiDAR data Type de document : Article/Communication Auteurs : Javier Estornell, Auteur ; Edyta Hadas, Auteur ; J. Marti, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 102273 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] classification par nuées dynamiques
[Termes descripteurs IGN] dendrométrie
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] Espagne
[Termes descripteurs IGN] extraction d'arbres
[Termes descripteurs IGN] houppier
[Termes descripteurs IGN] Juglans regia
[Termes descripteurs IGN] modèle numérique de terrain
[Termes descripteurs IGN] plantation agricole
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) The development of new tools based on remote sensing data in agriculture contributes to cost reduction, increased production, and greater profitability. Airborne LiDAR (Light Detection and Ranging) data show a significant potential for geometrically characterizing tree plantations. This study aims to develop a methodology to extract walnut (Juglans regia L.) crowns under leafless conditions using airborne LiDAR data. An original approach based on the alpha-shape algorithm, identification of local maxima, and k-means algorithms is developed to extract the crowns of walnut trees in a plot located in Viver (Eastern Spain) with 192 trees. In addition, stem diameter and volume, crown diameter, total height, and crown height were estimated from cloud metrics and other 2D parameters such as crown area, and diameter derived from LiDAR data. A correct identification was made of 178 trees (92.7%). For structure parameters, the most accurate results were obtained for crown diameter, stem diameter, and stem volume with coefficient of determination values (R2) equal to 0.95, 0.87 and 0.83; and RMSE values of 0.43 m (5.70%), 0.02 m (9.35%) and 0.016 m3 (21.55%), respectively. The models that gave the lowest R2 values were 0.69 for total height and 0.70 for crown height, with RMSE values of 0.84 m (12.4%) and 0.83 m (14.5%), respectively. A suitable definition of the central and lower parts of tree canopies was observed. Results of this study generate valuable information, which can be applied for improving the management of walnut plantations. Numéro de notice : A2021-239 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2020.102273 date de publication en ligne : 13/12/2020 En ligne : https://doi.org/10.1016/j.jag.2020.102273 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97265
in International journal of applied Earth observation and geoinformation > vol 96 (April 2021) . - n° 102273[article]Terrestrial laser scanning intensity captures diurnal variation in leaf water potential / S. Junttila in Remote sensing of environment, Vol 255 (March 2021)
Permalink3D change detection using adaptive thresholds based on local point cloud density / Dan Liu in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)
PermalinkEnhanced trajectory estimation of mobile laser scanners using aerial images / Zille Hussnain in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)
PermalinkImproving the unsupervised mapping of riparian bugweed in commercial forest plantations using hyperspectral data and LiDAR / Kabir Peerbhay in Geocarto international, vol 36 n° 4 ([01/03/2021])
PermalinkProgressive TIN densification with connection analysis for urban Lidar data / Tao Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 3 (March 2021)
PermalinkWhat factors shape spatial distribution of biomass in riparian forests? Insights from a LiDAR survey over a large area / Leo Huylenbroeck in Forests, vol 12 n° 3 (March 2021)
PermalinkAn anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds / Fei Su in ISPRS Journal of photogrammetry and remote sensing, vol 172 (February 2021)
PermalinkAutomatic filtering and 2D modeling of airborne laser scanning building point cloud / Fayez Tarsha-Kurdi in Transactions in GIS, Vol 25 n° 1 (February 2021)
PermalinkCurved buildings reconstruction from airborne LiDAR data by matching and deforming geometric primitives / Jingwei Song in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkDeveloping a site index model for P. Pinaster stands in NW Spain by combining bi-temporal ALS data and environmental data / Juan Guerra-Hernández in Forest ecology and management, vol 481 (February 2021)
PermalinkA feature-preserving point cloud denoising algorithm for LiDAR-derived DEM construction / Chuanfa Chen in Survey review, Vol 53 n° 377 (February 2021)
PermalinkImproving trajectory estimation using 3D city models and kinematic point clouds / Lucas Lucks in Transactions in GIS, Vol 25 n° 1 (February 2021)
PermalinkMonitoring the coastal changes of the Po river delta (Northern Italy) since 1911 using archival cartography, multi-temporal aerial photogrammetry and LiDAR data: implications for coastline changes in 2100 A.D. / Massimo Fabris in Remote sensing, Vol 13 n° 3 (February 2021)
PermalinkTropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning / Maryam Pourshamsi in ISPRS Journal of photogrammetry and remote sensing, vol 172 (February 2021)
PermalinkA density-based algorithm for the detection of individual trees from LiDAR data / Melissa Latella in Remote sensing, Vol 13 n° 2 (January 2021)
PermalinkBuilding extraction from Lidar data using statistical methods / Haval Abdul-Jabbar Sadeq in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 1 (January 2021)
PermalinkExtraction of street pole-like objects based on plane filtering from mobile LiDAR data / Jingming Tu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkFusion of ground penetrating radar and laser scanning for infrastructure mapping / Dominik Merkle in Journal of applied geodesy, vol 15 n° 1 (January 2021)
PermalinkGeoreferencing with self-calibration for airborne full-waveform Lidar data using digital elevation model / Qinghua Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 1 (January 2021)
PermalinkRelation-constrained 3D reconstruction of buildings in metropolitan areas from photogrammetric point clouds / Yuan Li in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkStructure-from-motion-derived digital surface models from historical aerial photographs: A new 3D application for coastal dune monitoring / Edoardo Grottoli in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkThe potential of LiDAR and UAV-photogrammetric data analysis to interpret archaeological sites: A case study of Chun Castle in South-West England / Israa Kadhim in ISPRS International journal of geo-information, vol 10 n° 1 (January 2021)
PermalinkAdjusting the regular network of squares resolution to the digital terrain model surface shape / Dariusz Gościewski in ISPRS International journal of geo-information, vol 9 n° 12 (December 2020)
PermalinkDu drone LiDAR à un nuage de points précis et exact : une chaîne de traitement LiDAR adaptée et quasi automatique / Maxime Lafleur in XYZ, n° 165 (décembre 2020)
PermalinkMS-RRFSegNetMultiscale regional relation feature segmentation network for semantic segmentation of urban scene point clouds / Haifeng Luo in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkRemote sensing in urban planning: Contributions towards ecologically sound policies? / Thilo Wellmann in Landscape and Urban Planning, vol 204 (December 2020)
PermalinkThe utility of fused airborne laser scanning and multispectral data for improved wind damage risk assessment over a managed forest landscape in Finland / Ranjith Gopalakrishnan in Annals of Forest Science [en ligne], vol 77 n° 4 (December 2020)
PermalinkActive and incremental learning for semantic ALS point cloud segmentation / Yaping Lin in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
PermalinkBuilding change detection using a shape context similarity model for LiDAR data / Xuzhe Lyu in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
PermalinkBuilding facade reconstruction using crowd-sourced photos and two-dimensional maps / Wu Jie in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 11 (November 2020)
PermalinkEffects of radiometric correction on cover type and spatial resolution for modeling plot level forest attributes using multispectral airborne LiDAR data / Wai Yeung Yan in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
PermalinkIndoor point cloud segmentation using iterative Gaussian mapping and improved model fitting / Bufan Zhao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkIs field-measured tree height as reliable as believed – Part II, A comparison study of tree height estimates from conventional field measurement and low-cost close-range remote sensing in a deciduous forest / Luka Jurjević in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
PermalinkTopographic connection method for automated mapping of landslide inventories, study case: semi urban sub-basin from Monterrey, Northeast of México / Nelly L. Ramirez Serrato in Geocarto international, vol 35 n° 15 ([01/11/2020])
PermalinkAssessing the effects of thinning on stem growth allocation of individual Scots pine trees / Ninni Saarinen in Forest ecology and management, vol 474 ([15/10/2020])
PermalinkComparing features of single and multi-photon lidar in boreal forests / Xiaowei Yu in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)
PermalinkHierarchical instance recognition of individual roadside trees in environmentally complex urban areas from UAV laser scanning point clouds / Yongjun Wang in ISPRS International journal of geo-information, vol 9 n° 10 (October 2020)
PermalinkA LiDAR aiding ambiguity resolution method using fuzzy one-to-many feature matching / Chuang Qian in Journal of geodesy, vol 94 n° 10 (October 2020)
PermalinkA preliminary exploration of the cooling effect of tree shade in urban landscapes / Qiuyan Yu in International journal of applied Earth observation and geoinformation, vol 92 (October 2020)
PermalinkSee the forest and the trees: Effective machine and deep learning algorithms for wood filtering and tree species classification from terrestrial laser scanning / Zhouxin Xi in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)
PermalinkThe effect of leaf-on and leaf-off forest canopy conditions on LiDAR derived estimations of forest structural diversity / Sophie Davison in International journal of applied Earth observation and geoinformation, vol 92 (October 2020)
PermalinkTowards an optimization of sample plot size and scanner position layout for terrestrial laser scanning in multi-scan mode / Tim Ritter in Forests, vol 11 n° 10 (October 2020)
PermalinkTree species classification using structural features derived from terrestrial laser scanning / Louise Terryn in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)
PermalinkWeighted spherical sampling of point clouds for forested scenes / Alex Fafard in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 10 (October 2020)
PermalinkApplication of UAV photogrammetry with LiDAR data to facilitate the estimation of tree locations and DBH values for high-value timber species in Northern Japanese mixed-wood forests / Kyaw Thu Moe in Remote sensing, vol 12 n° 17 (September 2020)
Permalink