Descripteur
Documents disponibles dans cette catégorie (160)



Etendre la recherche sur niveau(x) vers le bas
Ground deformation monitoring of the eruption offshore Mayotte / Aline Peltier in Comptes rendus Géoscience, vol 354 n° S2 (2022)
![]()
[article]
Titre : Ground deformation monitoring of the eruption offshore Mayotte Titre original : Suivi des déformations liées à l’éruption au large de Mayotte Type de document : Article/Communication Auteurs : Aline Peltier, Auteur ; Sébastien Saur , Auteur ; Valérie Ballu, Auteur ; François Beauducel, Auteur ; Pierre Briole, Auteur ; Kristel Chanard
, Auteur ; et al., Auteur ; Perrine Rouffiac
, Auteur ; Pierre Valty
, Auteur
Année de publication : 2022 Article en page(s) : pp 1 - 23 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] coordonnées GNSS
[Termes IGN] déformation de la croute terrestre
[Termes IGN] données GRACE
[Termes IGN] Mayotte
[Termes IGN] séismeRésumé : (auteur) En mai 2018, l’île de Mayotte a été touchée par une crise sismique sans précédent, suivie en juillet 2018 par des déplacements de surface à terre anormaux. En cumulé, du 1er juillet 2018 au 31 décembre 2021, les déplacements horizontaux étaient d’environ 21 à 25 cm vers l’est, et la subsidence d’environ 10 à 19 cm. L’étude des données GNSS à terre, et leur modélisation couplée aux données des capteurs de pression en mer, ont permis de conclure à une origine magmatique de la crise sismique avec la déflation d’une source profonde à l’est de Mayotte, confirmée en mai 2019 par la découverte d’une éruption sous-marine, à 50 km au large de Mayotte ([Feuillet et al., 2021]). Malgré une géométrie de réseau non optimale et des récepteurs éloignés de la source, les données GNSS ont permis de suivre la dynamique profonde du transfert magmatique, via la surveillance des flux volumiques. Numéro de notice : A2022-917 Affiliation des auteurs : IGN+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article DOI : 10.5802/crgeos.176 Date de publication en ligne : 19/12/2022 En ligne : https://doi.org/10.5802/crgeos.176 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102409
in Comptes rendus Géoscience > vol 354 n° S2 (2022) . - pp 1 - 23[article]On study of the Earth topography correction for the GRACE surface mass estimation / Fan Yang in Journal of geodesy, vol 96 n° 12 (December 2022)
![]()
[article]
Titre : On study of the Earth topography correction for the GRACE surface mass estimation Type de document : Article/Communication Auteurs : Fan Yang, Auteur ; Zhicai Luo, Auteur ; Hao Zhou, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 95 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données GRACE
[Termes IGN] formule de Stokes
[Termes IGN] géoïde gravimétrique
[Termes IGN] itération
[Termes IGN] masse de la Terre
[Termes IGN] topographieRésumé : (auteur) Traditional conversion from gravity Stokes coefficients into the surface mass, e.g., in the GRACE(-FO) applications, presumes the Earth as a perfect sphere that is apparently against the reality. Recent studies manage to correct the conversion by considering the Earth’s oblateness, in another word, the Earth is treated as an ellipsoid. However, the Earth’s geometry is far more complicated due to the topography, so that neither a sphere nor an ellipsoid is exact. Evidences from recent studies and this one demonstrate that any geometrical approximation of the Earth shape like a presumed sphere will inevitably lead to a bias in the surface mass estimation from GRACE gravity fields, resulting in a possible misinterpretation of geophysical signals that may occur in polar regions or mountain areas. In this context, we propose an iterative scaling factor method to numerically realize a more accurate surface mass estimate, considering a more realistic geometry of the Earth including its oblateness, topography and geoid undulation. Verified with a series of simulations, the proposed method is found to be efficient (less than four iterations), reliable (after a broad range of tests) and universally accurate (reducing at least 80% of the bias). Relative to our method, the mean linear trend in 2002–2015 estimated from GRACE under an ideal spherical Earth is found to be underestimated by about 3.1% and 5.5% over Greenland and West Antarctica, respectively. Among the trend underestimation, the topography-related contribution takes up − 0.5% (0.79 Gt/yr, the negative sign denotes an overestimation) and − 0.4% (0.34 Gt/yr), respectively. Although the value is small, it is a systematic bias worth considering, for example, it is greater than the influence (0.3 Gt/yr on the trend estimation over West Antarctica) by switching atmospherical de-aliasing products from RL05 to RL06. Besides, the topography-induced bias rapidly increases to 2.7% (0.26 mm/yr) at mountain Himalayas, which is even larger than the ellipsoid-induced bias (0.19 mm/yr). Based on the results obtained so far, the topography-induced bias is found to be roughly one order of magnitude smaller than GRACE’s present measurement error; nevertheless, it will be relevant once the GRACE is improved toward its baseline accuracy. In particular, the topography correction should be considered for NGGM that expects to map the Earth gravity field in an unprecedented accuracy and spatial resolution. Numéro de notice : A2022-878 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s00190-022-01683-0 Date de publication en ligne : 02/12/2022 En ligne : https://doi.org/10.1007/s00190-022-01683-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102189
in Journal of geodesy > vol 96 n° 12 (December 2022) . - n° 95[article]Impact assessment of the seasonal hydrological loading on geodetic movement and seismicity in Nepal Himalaya using GRACE and GNSS measurements / Devendra Shashikant Nagale in Geodesy and Geodynamics, vol 13 n° 5 (September 2022)
![]()
[article]
Titre : Impact assessment of the seasonal hydrological loading on geodetic movement and seismicity in Nepal Himalaya using GRACE and GNSS measurements Type de document : Article/Communication Auteurs : Devendra Shashikant Nagale, Auteur ; Suresh Kannaujiya, Auteur ; Param K. Gautam, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 445 - 455 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] coefficient de corrélation
[Termes IGN] déformation de la croute terrestre
[Termes IGN] données GNSS
[Termes IGN] données GRACE
[Termes IGN] International Terrestrial Reference Frame
[Termes IGN] mousson
[Termes IGN] Népal
[Termes IGN] pondération
[Termes IGN] série temporelle
[Termes IGN] sismicité
[Termes IGN] surcharge hydrologique
[Termes IGN] variation saisonnièreRésumé : (auteur) The Himalayan terrain is an epitome of ongoing convergence and geodetic deformation where both tectonic and non-tectonic forces prevail. In this study, the Gravity Recovery and Climate Experiment (GRACE) and Global Positioning System (GPS) datasets are used to assess the impact of seasonal loading on deformation with seismicity in Nepal. The recorded GPS data from 21 Global Navigation Satellite System (GNSS) stations during 2017–2020 are processed with respect to ITRF14 and the Indian reference frame, and the Center for Space Research (CSR) mascon RL06 during 2002–2020 is adopted to estimate the terrestrial water storage (TWS) change over the Ganga-Brahmaputra River basin. The results indicate that the hydrological loading effect or TWS change shows high negative, high positive, and moderately positive values in pre-monsoon, co-monsoon, and post-monsoon months, respectively. The detrended GPS data of both horizontal and vertical components correlate with the seasonal TWS change using the Pearson correlation coefficient at each GNSS site. In addition, the correlation coefficient has been interpolated using inverse distance weighting to investigate the regional TWS influence on geodetic displacement. In the north component, the correlation coefficient ranges from −0.6 to 0.6. At the same time, the TWS is positively correlated with geodetic displacement (0.82) in the east component, and the correlation coefficient is negative (−0.69) in the vertical component. The negative correlation signifies an inverse relationship between seasonal TWS variation and geodetic displacements. The strain rate is estimated, which shows higher negative values in pre-monsoon than in post-monsoon. Similarly, the effect of seismicity is 47.90% for pre-monsoon, 15.97% for co-monsoon, and 17.56% for post-monsoon. Thus we can infer that the seismicity decreases with the increase of seasonal hydrological loading. Furthermore, the effect of strain is much higher in pre-monsoon than in post-monsoon since the impact of co-monsoon continues to persist on a small scale in the post-monsoon season. Numéro de notice : A2022-762 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1016/j.geog.2022.02.006 Date de publication en ligne : 20/05/2022 En ligne : https://doi.org/10.1016/j.geog.2022.02.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101780
in Geodesy and Geodynamics > vol 13 n° 5 (September 2022) . - pp 445 - 455[article]Detecting preseismic signals in GRACE gravity solutions: Application to the 2011 Tohoku Mw 9.0 earthquake / Isabelle Panet in Journal of geophysical research : Solid Earth, vol 127 n° 8 (August 2022)
![]()
[article]
Titre : Detecting preseismic signals in GRACE gravity solutions: Application to the 2011 Tohoku Mw 9.0 earthquake Type de document : Article/Communication Auteurs : Isabelle Panet , Auteur ; Clément Narteau, Auteur ; Jean-Michel Lemoine, Auteur ; Sylvain Bonvalot, Auteur ; Dominique Remy, Auteur
Année de publication : 2022 Projets : 2-Pas d'info accessible - article non ouvert / Article en page(s) : n° e2022JB024542 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] déformation de la croute terrestre
[Termes IGN] données GRACE
[Termes IGN] gradient de gravitation
[Termes IGN] Pacifique (océan)
[Termes IGN] séisme
[Termes IGN] sismicité
[Termes IGN] subduction
[Termes IGN] tectonique des plaques
[Termes IGN] Tohoku (Japon)Résumé : (auteur) We conduct a global analysis of GRACE-reconstructed gravity gradients from July 2004 to February 2011, to test whether the deep signals preceding the March 2011 Tohoku earthquake can be detected before the event as a specific feature originating from solid Earth. First, we improve the angular resolution of the gravity gradients using two overlapping ranges of azimuthal sensitivity to investigate short-term signals of large amplitude aligned with the orientation of the Northwestern Pacific subduction. Then, we set-up a method to identify consistent solid Earth signals shared by different GRACE gravity models. Robust signals in a model are selected based on their spatial overlap and relative intensity with the signals of another model, so that their sensitivity to the GRACE data processing and ocean dealiasing product can be tested. We show that the dipolar gravity gradient anomaly before the Tohoku earthquake is nearly unique in space and time in the GRACE GRGS03 solutions. A well-resolved dipolar spatial pattern, typical of dislocations within the solid Earth and poorly sensitive to the ocean dealiasing model, is detected. In addition, the preseismic gravity gradient increase is highly consistent between the GRGS03 and CSR06 solutions, independently from their respective oceanic corrections, and can be clearly distinguished from rare anomalies of similar amplitudes all associated with the water cycle over continental areas. Our approach offers solutions for the continuous monitoring of the Pacific subduction belt to document transient slabs motions in real time from global satellite gravity fields, and their relation with shallower deformations and seismic events. Numéro de notice : A2022-605 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Autre URL associée : vers HAL Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1029/2022JB024542 Date de publication en ligne : 06/08/2022 En ligne : https://doi.org/10.1029/2022JB024542 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101384
in Journal of geophysical research : Solid Earth > vol 127 n° 8 (August 2022) . - n° e2022JB024542[article]Comparison between Gaussian and decorrelation filters of GRACE-based RL05 temporal gravity solutions over Egypt / Basem Elsaka in Survey review, vol 54 n° 384 (May 2022)
![]()
[article]
Titre : Comparison between Gaussian and decorrelation filters of GRACE-based RL05 temporal gravity solutions over Egypt Type de document : Article/Communication Auteurs : Basem Elsaka, Auteur ; Mohamed El-Ashquer, Auteur Année de publication : 2022 Article en page(s) : pp 233 - 242 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] analyse comparative
[Termes IGN] champ de pesanteur local
[Termes IGN] décorrélation
[Termes IGN] données GRACE
[Termes IGN] Egypte
[Termes IGN] filtre de GaussRésumé : (auteur) This contribution provides a comparison between the Gaussian and decorrelation filters as derived from GRACE products (RL05) estimated by the official GRACE Science Data System centres (GFZ, CSR and JPL) as well as the ITSG-GRACE2016 solutions over Egypt. The outcome of this study will help in finding out which of these centres provides improved temporal gravity solutions as well as the most promising GRACE time series over Egypt. The obtained results regarding Gaussian filters show that the GFZ centre provides the most promising solutions w.r.t. CSR and JPL. Whereas the ITSG-GRACE2016 products provide improvements, especially at Gaussian radius 200 km, of about 56%, 68% and 60% w.r.t. CSR, JPL and GFZ solutions, respectively. Regarding the decorrelation filtering, the ITSG-GRACE2016 provides the least Std. w.r.t. CSR, JPL and GFZ solutions showing for the DDK8 improvement of about 48%, 64% and 68% w.r.t. the three centres GFZ, JPL and CSR, respectively. Numéro de notice : A2022-355 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2021.1919841 Date de publication en ligne : 04/05/2021 En ligne : https://doi.org/10.1080/00396265.2021.1919841 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100553
in Survey review > vol 54 n° 384 (May 2022) . - pp 233 - 242[article]Deep mass redistribution prior to the 2010 Mw 8.8 Maule (Chile) Earthquake revealed by GRACE satellite gravity / Marie Bouih in Earth and planetary science letters, vol 584 (15 April 2022)
PermalinkEstimation of the height datum geopotential value of Hong Kong using the combined Global Geopotential Models and GNSS/levelling data / Panpan Zhang in Survey review, vol 54 n° 383 (March 2022)
PermalinkApplications and challenges of GRACE and GRACE follow-on satellite gravimetry / Jianli Chen in Surveys in Geophysics, vol 43 n° 1 (February 2022)
PermalinkSeasonal variations of vertical crustal motion in Australia observed by joint analysis of GPS and GRACE / Hao Wang in Geomatics and Information Science of Wuhan University, vol 47 n° 2 (February 2022)
PermalinkPermalinkAssessment of degree-2 order-1 gravitational changes from GRACE and GRACE Follow-on, Earth rotation, satellite laser ranging, and models / Jianli Chen in Journal of geodesy, vol 95 n° 4 (April 2021)
PermalinkWhat have we learnt from Icesat on Greenland ice sheet change and what to expect from Icesat 2 / Blaženka Bukač in Geodetski vestnik, vol 65 n° 1 (March - May 2021)
PermalinkAssessment of mass-induced sea level variability in the Tropical Indian Ocean based on GRACE and altimeter observations / Shiva Shankar Manche in Journal of geodesy, vol 95 n° 2 (February 2021)
PermalinkCharacterization of mass variations in Antarctica in response to climatic fluctuations from space-based gravimetry and radar altimetry data / Athul Kaitheri (2021)
PermalinkPermalink