Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géophysique interne > données géophysiques > données GOCE
données GOCEVoir aussi |
Documents disponibles dans cette catégorie (42)



Etendre la recherche sur niveau(x) vers le bas
Estimation of the height datum geopotential value of Hong Kong using the combined Global Geopotential Models and GNSS/levelling data / Panpan Zhang in Survey review, vol 54 n° 383 (March 2022)
![]()
[article]
Titre : Estimation of the height datum geopotential value of Hong Kong using the combined Global Geopotential Models and GNSS/levelling data Type de document : Article/Communication Auteurs : Panpan Zhang, Auteur ; Lifeng Bao, Auteur ; Dongmei Guo, Auteur Année de publication : 2022 Article en page(s) : pp 106 - 116 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] données GNSS
[Termes IGN] données GOCE
[Termes IGN] données GRACE
[Termes IGN] données topographiques
[Termes IGN] Earth Gravity Model 2008
[Termes IGN] géoïde altimétrique
[Termes IGN] Hong-Kong
[Termes IGN] MNS SRTM
[Termes IGN] modèle de géopotentiel local
[Termes IGN] nivellement
[Termes IGN] système de référence altimétriqueRésumé : (auteur) The advent of the Gravity Recovery and Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Exploration (GOCE) has changed the global contribution in the determination of high-accuracy global geopotential models (GGMs). In this paper, a spectral expansion method is used to determine the combined GGMs, using the high-resolution EGM2008 model and residual terrain model (RTM) to effectively bridge the spectral gap between the satellite and terrestrial data. The accuracy of the combined GGMs shows improvement compared with GOCE/GRACE-based GGMs and EGM2008 in determining the geopotential of the Hong Kong Principal Datum (HKPD). As a result of the DIR_R5/EGM2008/RTM model and GNSS/levelling, the geopotential value of HKPD is estimated to be 62,636,860.52 m2s−2 with respect to the global geoid W0 = 62,636,853.4 m2s−2. Therefore, the vertical offset between the HKPD and global geoid is about −72.8 cm, which means that the HKPD is 72.8 cm below the global height datum. Numéro de notice : A2022-238 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1080/00396265.2021.1884794 Date de publication en ligne : 17/02/2021 En ligne : https://doi.org/10.1080/00396265.2021.1884794 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100162
in Survey review > vol 54 n° 383 (March 2022) . - pp 106 - 116[article]Height system unification and estimation of the lithospheric structure beneath Vietnam through high-resolution gravity field and quasigeoid modeling / Dinh Toan Vu (2021)
![]()
Titre : Height system unification and estimation of the lithospheric structure beneath Vietnam through high-resolution gravity field and quasigeoid modeling Titre original : Unification du système de hauteur et estimation de la structure lithosphérique sous le Vietnam utilisant la modélisation du champ de gravité et du quasigéoïde à haute résolution Type de document : Thèse/HDR Auteurs : Dinh Toan Vu, Auteur ; Sylvain Bonvalot, Directeur de thèse ; Sean L. Bruinsma, Directeur de thèse Editeur : Toulouse : Université de Toulouse Année de publication : 2021 Importance : 234 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse en vue de l'obtention du Doctorat de l'Université de Toulouse délivrée par l'Université Toulouse 3 - Paul SabatierLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] anomalie de pesanteur
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données GNSS
[Termes IGN] données GOCE
[Termes IGN] géoïde gravimétrique
[Termes IGN] géoïde local
[Termes IGN] lithosphère
[Termes IGN] modèle de géopotentiel local
[Termes IGN] nivellement
[Termes IGN] quasi-géoïde
[Termes IGN] Viet NamIndex. décimale : THESE Thèses et HDR Résumé : (auteur) The goal of this work was twofold. The first part was devoted to the research of the size and physical shape of the Earth in Vietnam through the determination of a local gravimetric quasigeoid model. The second part was to better constrain the Earth's interior structure beneath Vietnam by determining the Moho and Lithosphere-Asthenosphere Boundary (LAB) depth models. For the first objective, a high-resolution gravimetric quasigeoid model for Vietnam and its surrounding areas was determined based on new land gravity data in combination with fill-in data where no gravity data existed. The resulting quasigeoid model was evaluated using 812 GNSS/levelling points in the study region. This comparison indicates that the quasigeoid model has a standard deviation of 9.7 cm and 50 cm in mean bias. This new local quasigeoid model for Vietnam represents a significant improvement over the global models EIGEN-6C4 and EGM2008, which have standard deviations of 19.2 and 29.1 cm, respectively, when compared to the GNSS/levelling data. An essential societal and engineering application of the gravimetric quasigeoid is in GNSS levelling, and a vertical offset model for Vietnam and its surrounding areas was determined based on the GNSS/levelling points and gravimetric-only quasigeoid model for this purpose. The offset model was evaluated using cross-validation technique by comparing with GNSS/levelling data. Results indicate that the offset model has a standard deviation of 5.9 cm in the absolute sense. Thanks to this offset model, GNSS levelling can be carried out over most of Vietnam's territory complying to third-order levelling requirements, while the accuracy requirements for fourth-order levelling networks is met for the entire country. To unify the height system towards the International Height Reference Frame (IHRF), the zero-height geopotential value for the Vietnam Local Vertical Datum W_0^LVD was determined based on two approaches: 1) Using high-quality GNSS/levelling data and the estimated gravimetric quasigeoid model, 2) Using the Geodetic Boundary Value Problem (GBVP) approach based on the GOCE global gravity field model enhanced with terrestrial gravity data. This geopotential value can be used to connect the height system of Vietnam with the neighboring countries. Moreover, the GBVP approach was also used for direct determination of the gravity potential on the surface at three GNSS Continuously Operating Reference Station (CORS) stations at epoch 2018.0 in Vietnam. Based on time series of the vertical component derived from these GNSS observations as well as InSAR data, temporal variations in the geopotential were also estimated on these permanent GNSS stations. This enables monitoring of the vertical datum and detect possible deformation. These stations may thus contribute to increase the density of reference points in the IHRF for this region. For the second objective, the local quasigeoid model was first converted to the geoid. Then, high-resolution Moho and LAB depth models were determined beneath Vietnam based on the local isostatic hypothesis using the geoid height derived from the estimated geoid, elevation data and thermal analysis. From new land gravity data, a complete grid and map of gravity anomalies i.e., Free-air, Bouguer and Isostatic was determined for the whole of Vietnam. The Moho depth was also computed based on the gravity inversion using the Bouguer gravity anomaly grid. All new models are computed at 1' resolution. The resulting Moho and LAB depth models were evaluated using available seismic data as well as global and local lithospheric models available in the study region. [...] Note de contenu : 1- Introduction
2- Theoretical basis
3- Data and map of gravity anomalies
4- The gravimetric quasigeoid solution
5- Quasigeoïd application for GNSS levelling and height system unification
6- Quasigeoid application for determination of the lithospheric structure
7- Conclusion and perspectivesNuméro de notice : 28495 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Thèse française Note de thèse : Thèse de Doctorat : Sciences de la Terre et des Planètes Solides : Toulouse : 2021 Organisme de stage : Geosciences Environnement Toulouse GET DOI : sans En ligne : http://www.theses.fr/2021TOU30050 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99240
Titre : Remote sensing by satellite gravimetry Type de document : Monographie Auteurs : Thomas Gruber, Éditeur scientifique ; Annette Eicker, Éditeur scientifique ; Frank Flechtner, Éditeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2021 Importance : 286 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-3-0365-0009-6 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] bilan de masse
[Termes IGN] CHAMP (satellite)
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données GOCE
[Termes IGN] données GRACE
[Termes IGN] géocentre
[Termes IGN] gradient de gravitation
[Termes IGN] gravimétrie spatiale
[Termes IGN] nivellement par GPS
[Termes IGN] orbitographie
[Termes IGN] télémétrie laser sur satelliteRésumé : (auteur) Over the last two decades, satellite gravimetry has become a new remote sensing technique that provides a detailed global picture of the physical structure of the Earth. With the CHAMP, GRACE, GOCE and GRACE Follow-On missions, mass distribution and mass transport in the Earth system can be systematically observed and monitored from space. A wide range of Earth science disciplines benefit from these data, enabling improvements in applied models, providing new insights into Earth system processes (e.g., monitoring the global water cycle, ice sheet and glacier melting or sea-level rise) or establishing new operational services. Long time series of mass transport data are needed to disentangle anthropogenic and natural sources of climate change impacts on the Earth system. In order to secure sustained observations on a long-term basis, space agencies and the Earth science community are currently planning future satellite gravimetry mission concepts to enable higher accuracy and better spatial and temporal resolution. This Special Issue provides examples of recent improvements in gravity observation techniques and data processing and analysis, applications in the fields of hydrology, glaciology and solid Earth based on satellite gravimetry data, as well as concepts of future satellite constellations for monitoring mass transport in the Earth system. Note de contenu : 1- The GFZ GRACE RL06 monthly gravity field time series: Processing details and quality assessment
2- SLR, GRACE and swarm gravity field determination and combination
3- A new approach to Earth’s gravity field modeling using GPS-derived kinematic orbits and baselines
4- Improved estimates of geocenter variability from time-variable gravity and ocean model outputs
5- An assessment of the GOCE high-level processing facility (HPF) released global geopotential models with regional test results in Turkey
6- Next-generation gravity missions: Sino-European numerical simulation comparison exercise
7- Combination analysis of future polar-type gravity mission and GRACE follow-on
8- Gravity field recovery using high-precision, high–low inter-satellite links
9- High-resolution mass trends of the Antarctic ice sheet through a spectral combination of satellite gravimetry and radar altimetry observations
10- The rapid and steady mass loss of the Patagonian icefields throughout the GRACE era: 2002–2017
11- Downscaling GRACE TWSA data into high-resolution groundwater level anomaly using machine learning-based models in a glacial aquifer system
12- Hydrologic mass changes and their implications in Mediterranean-climate Turkey from GRACE measurements
13- GOCE-derived coseismic gravity gradient changes caused by the 2011 Tohoku-Oki earthquakeNuméro de notice : 28391 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Recueil / ouvrage collectif DOI : 10.3390/books978-3-0365-0009-6 En ligne : https://doi.org/10.3390/books978-3-0365-0009-6 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98720 From space to lithosphere: inversion of the GOCE gravity gradients. Supply to the Earth’s interior study / Matthieu Plasman in Geophysical journal international, vol 223 n° 1 (October 2020)
![]()
[article]
Titre : From space to lithosphere: inversion of the GOCE gravity gradients. Supply to the Earth’s interior study Type de document : Article/Communication Auteurs : Matthieu Plasman, Auteur ; Christel Tiberi, Auteur ; Cécilia Cadio, Auteur ; Anita Thea Saraswati, Auteur ; Gwendoline Pajot-Métivier , Auteur ; Michel Diament
, Auteur
Année de publication : 2020 Projets : 3-projet - voir note / Article en page(s) : pp 398 - 419 Note générale : bibliographie
TOSCA project financing (PIGGS project)Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] anomalie de pesanteur
[Termes IGN] données GOCE
[Termes IGN] géophysique interne
[Termes IGN] gradient de gravitation
[Termes IGN] gravimétrie spatiale
[Termes IGN] lithosphère
[Termes IGN] problème inverseRésumé : (auteur) The emergence of high resolution satellite measurements of the gravitational field (GOCE mission) offers promising perspectives for the study of the Earth’s interior. These new data call for the development of innovant analysis and interpretation methods. Here we combine a forward prism computation with a Bayesian resolution approach to invert for these gravity gradient data configuration. We apply and test our new method on satellite data configuration, that is 225 km height with a global and homogeneous geographic distribution. We first quantify the resolution of our method according to both data and parametrization characteristics. It appears that for reasonable density contrast values (0.1 g cm−3) crustal structures have to be wider than ∼28 km to be detectable in the GOCE signal. Deeper bodies are distinguishable for greater size (35 km size at 50 km depth, ∼80 km at 300 km depth). We invert the six tensor components, among which five are independent. By carefully testing each of them and their different combinations, we enlighten a trade off between the recovery of data and the sensitivity to inversion parameters. We particularly discussed this characteristic in terms of geometry of the synthetic model tested (structures orientation, 3-D geometry, etc.). In terms of RMS value, each component is always better explained if inverted solely, but the result is strongly affected by the inversion parametrization (smoothing, variances, etc.). On the contrary, the simultaneous inversion of several components displays a significant improvement for the global tensor recovery, more dependent on data than on density variance or on smoothness control. Comparing gravity and gradient inversions, we highlight the superiority of the GG data to better reproduce the structures especially in terms of vertical location. We successfully test our method on a realistic case of a complex subduction case for both gradient and gravity data. While the imaging of small crustal structures requires terrestrial gravity data set, the longest wavelength of the slab is well recovered with both data sets. The precision and homogeneous coverage of GOCE data however, counterbalance the heterogeneous and often quite non-existence coverage of terrestrial gravity data. This is particularly true in large areas which requires a coherent assemblage of heterogeneous data sets, or in high relief, vegetally covered and offshore zones. Numéro de notice : A2020-823 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Autre URL associée : vers HAL Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1093/gji/ggaa318 Date de publication en ligne : 26/06/2020 En ligne : https://doi.org/10.1093/gji/ggaa318 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97260
in Geophysical journal international > vol 223 n° 1 (October 2020) . - pp 398 - 419[article]Using quantum optical sensors for determining the Earth’s gravity field from space / Jurgen Müller in Journal of geodesy, vol 94 n° 8 (August 2020)
![]()
[article]
Titre : Using quantum optical sensors for determining the Earth’s gravity field from space Type de document : Article/Communication Auteurs : Jurgen Müller, Auteur ; Hu Wu, Auteur Année de publication : 2020 Article en page(s) : n° 71 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] capteur optique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données GOCE
[Termes IGN] données GRACE
[Termes IGN] gradient
[Termes IGN] gradiomètre
[Termes IGN] gravimétrie spatiale
[Termes IGN] horloge du satellite
[Termes IGN] incertitude temporelle
[Termes IGN] longueur d'onde
[Termes IGN] onde myriamétrique
[Termes IGN] optique quantiqueRésumé : (auteur) Quantum optical technology provides an opportunity to develop new kinds of gravity sensors and to enable novel measurement concepts for gravimetry. Two candidates are considered in this study: the cold atom interferometry (CAI) gradiometer and optical clocks. Both sensors show a high sensitivity and long-term stability. They are assumed on board of a low-orbit satellite like gravity field and steady-state ocean circulation explorer (GOCE) and gravity recovery and climate experiment (GRACE) to determine the Earth’s gravity field. Their individual contributions were assessed through closed-loop simulations which rigorously mapped the sensors’ sensitivities to the gravity field coefficients. Clocks, which can directly obtain the gravity potential (differences) through frequency comparison, show a high sensitivity to the very long-wavelength gravity field. In the GRACE orbit, clocks with an uncertainty level of 1.0×10−18 are capable to retrieve temporal gravity signals below degree 12, while 1.0×10−17 clocks are useful for detecting the signals of degree 2 only. However, it poses challenges for clocks to achieve such uncertainties in a short time. In space, the CAI gradiometer is expected to have its ultimate sensitivity and a remarkable stability over a long time (measurements are precise down to very low frequencies). The three diagonal gravity gradients can properly be measured by CAI gradiometry with a same noise level of 5.0 mE/Hz−−−√. They can potentially lead to a 2–5 times better solution of the static gravity field than that of GOCE above degree and order 50, where the GOCE solution is mainly dominated by the gradient measurements. In the lower degree part, benefits from CAI gradiometry are still visible, but there, solutions from GRACE-like missions are superior. Numéro de notice : A2020-537 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01401-8 Date de publication en ligne : 24/07/2020 En ligne : https://doi.org/10.1007/s00190-020-01401-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95730
in Journal of geodesy > vol 94 n° 8 (August 2020) . - n° 71[article]Using real polar ground gravimetry data to solve the GOCE polar gap problem in satellite-only gravity field recovery / Biao Lu in Journal of geodesy, Vol 94 n°3 (March 2020)
PermalinkOn the assimilation of absolute geodetic dynamic topography in a global ocean model: impact on the deep ocean state / Alexey Androsov in Journal of geodesy, vol 93 n° 2 (February 2019)
PermalinkLeast-squares cross-wavelet analysis and its applications in geophysical time series / Ebrahim Ghaderpour in Journal of geodesy, vol 92 n° 10 (October 2018)
PermalinkApplying the GOCE-based GGMs for the quasi-geoid modelling of Finland / Timo Saari in Journal of applied geodesy, vol 12 n° 1 (January 2018)
PermalinkPermalinkA conventional value for the geoid reference potential W0 / L. Sánchez in Journal of geodesy, vol 90 n° 9 (September 2016)
PermalinkJoint analysis of GOCE gravity gradients data of gravitational potential and of gravity with seismological and geodynamic observations to infer mantle properties / Marianne Greff-Lefftz in Geophysical journal international, vol 205 n° 1 (April 2016)
PermalinkComparison of Satellite-Only Gravity Field Models Constructed with All and Parts of the GOCE Gravity Gradient Dataset / Sean L. Bruinsma in Marine geodesy, vol 39 n° 3-4 (March - June 2016)
PermalinkPermalinkAlternative validation method of satellite gradiometric data by integral transform of satellite altimetry data / Michal Šprlák in Journal of geodesy, vol 89 n° 8 (August 2015)
Permalink