Descripteur
Termes descripteurs IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géophysique interne > géodésie > géodésie spatiale > interférométrie > interférométrie à très grande base
interférométrie à très grande baseSynonyme(s)vlbi Interférométrie à très longue base |



Etendre la recherche sur niveau(x) vers le bas
Benefits of non-tidal loading applied at distinct levels in VLBI analysis / Matthias Glomsda in Journal of geodesy, vol 94 n° 9 (September 2020)
![]()
[article]
Titre : Benefits of non-tidal loading applied at distinct levels in VLBI analysis Type de document : Article/Communication Auteurs : Matthias Glomsda, Auteur ; Mathis Blossfeld, Auteur ; Manuela Seitz, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 90 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] données ITGB
[Termes descripteurs IGN] effet de charge
[Termes descripteurs IGN] interférométrie à très grande base
[Termes descripteurs IGN] pesanteur hors marée
[Termes descripteurs IGN] retard troposphérique
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surcharge hydrologique
[Termes descripteurs IGN] surcharge océanique
[Termes descripteurs IGN] transformation de HelmertRésumé : (auteur) In the analysis of very long baseline interferometry (VLBI) observations, many geophysical models are used for correcting the theoretical signal delay. In addition to the conventional models described by Petit and Luzum (eds) (IERS Conventions, 2010), we are applying different parts of non-tidal site loading, namely the atmospheric, oceanic, and hydrological ones. To investigate their individual contributions, these parts are considered both separately and combined to a total loading. The application of the corresponding site displacements is performed at two distinct levels of the geodetic parameter estimation process (observation and normal equation level), which turn out to give very similar results in many cases. To validate our findings internally, the site displacements are provided by two different data centres: the Earth-System-Modelling group at the Deutsches GeoForschungsZentrum in Potsdam (ESMGFZ, see Dill and Dobslaw, J Geophys Res Solid Earth, 2013. https://doi.org/10.1002/jgrb.50353ISTEX)] and the International Mass Loading Service [IMLS, see Petrov (The international mass loading service, 2015)]. We show that considering non-tidal loading is actually useful for mitigating systematic effects in the VLBI results, like annual signals in the station height time series. If the sum of all non-tidal loading parts is considered, the WRMS of the station heights and baseline lengths is reduced in 80–90% of all cases, and the relative improvement is about −3.5% on average. The main differences between our chosen providers originate from hydrological loading. Numéro de notice : A2020-540 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01418-z date de publication en ligne : 31/08/2020 En ligne : https://doi.org/10.1007/s00190-020-01418-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95741
in Journal of geodesy > vol 94 n° 9 (September 2020) . - n° 90[article]GipsyX/RTGx, a new tool set for space geodetic operations and research / Willy I. Bertiger in Advances in space research, vol 66 n° 3 (1 August 2020)
![]()
[article]
Titre : GipsyX/RTGx, a new tool set for space geodetic operations and research Type de document : Article/Communication Auteurs : Willy I. Bertiger, Auteur ; Yoaz E. Bar-Sever, Auteur ; A. Dorsey, Auteur ; Bruce J. Haines, Auteur ; N.R. Harvey, Auteur ; Dan Hemberger, Auteur ; Michael B. Heflin, Auteur ; Wenwen Lu, Auteur ; Mark Miller, Auteur ; Angelyn Moore, Auteur ; Dave Murphy, Auteur ; Paul Ries, Auteur ; L.J. Romans, Auteur ; Aurore E. Sibois, Auteur ; Ant Sibthorpe, Auteur ; Bela Szilagyi, Auteur ; Michele Vallisneri, Auteur ; Pascal Willis , Auteur
Année de publication : 2020 Projets : 3-projet - voir note / Article en page(s) : pp 469 - 489 Note générale : bibliographie
The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] données DORIS
[Termes descripteurs IGN] données GNSS
[Termes descripteurs IGN] données ITGB
[Termes descripteurs IGN] données TLS (télémétrie)
[Termes descripteurs IGN] filtre de Kalman
[Termes descripteurs IGN] horloge atomique
[Termes descripteurs IGN] horloge du satellite
[Termes descripteurs IGN] logiciel d'orbitographie
[Termes descripteurs IGN] positionnement ponctuel précis
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] temps réel
[Termes descripteurs IGN] traitement de données GNSSRésumé : (auteur) GipsyX/RTGx is the Jet Propulsion Laboratory’s (JPL) next generation software package for positioning, navigation, timing, and Earth science using measurements from three geodetic techniques: Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS); with Very Long Baseline Interferometry (VLBI) under development. The software facilitates combined estimation of geodetic and geophysical parameters using a Kalman filter approach on real or simulated data in both post-processing and in real-time. The estimated parameters include station coordinates and velocities, satellite orbits and clocks, Earth orientation, ionospheric and tropospheric delays. The software is also capable of full realization of a dynamic terrestrial reference through analysis and combination of time series of ground station coordinates.
Applying lessons learned from its predecessors, GIPSY-OASIS and Real Time GIPSY (RTG), GipsyX/RTGx was re-designed from the ground up to offer improved precision, accuracy, usability, and operational flexibility. We present some key aspects of its new architecture, and describe some of its major applications, including Real-time orbit determination and ephemeris predictions in the U.S. Air Force Next Generation GPS Operational Control Segment (OCX), as well as in JPL’s Global Differential GPS (GDGPS) System, supporting User Range Error (URE) of
5 cm RMS; precision post-processing GNSS orbit determination, including JPL’s contributions to the International GNSS Service (IGS) with URE in the 2 cm RMS range; Precise point positioning (PPP) with ambiguity resolution, both statically and kinematically, for geodetic applications with 2 mm horizontal, and 6.5 mm vertical repeatability for static positioning; Operational orbit and clock determination for Low Earth Orbiting (LEO) satellites, such as NASA’s Gravity Recovery and Climate Experiment (GRACE) mission with GRACE relative clock alignment at the 20 ps level; calibration of radio occultation data from LEO satellites for weather forecasting and climate studies; Satellite Laser Ranging (SLR) to GNSS and LEO satellites, DORIS-based and multi-technique orbit determination for LEO; production of terrestrial reference frames and Earth rotation parameters in support of JPL’s contribution to the International Terrestrial Reference Frame (ITRF).Numéro de notice : A2020-575 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : INFORMATIQUE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.asr.2020.04.015 date de publication en ligne : 22/04/2020 En ligne : https://doi.org/10.1016/j.asr.2020.04.015 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96369
in Advances in space research > vol 66 n° 3 (1 August 2020) . - pp 469 - 489[article]Geodetic VLBI for precise orbit determination of Earth satellites: a simulation study / Grzegorz Klopotek in Journal of geodesy, vol 94 n° 6 (June 2020)
![]()
[article]
Titre : Geodetic VLBI for precise orbit determination of Earth satellites: a simulation study Type de document : Article/Communication Auteurs : Grzegorz Klopotek, Auteur ; Thomas Hobiger, Auteur ; Rüdiger Haas, Auteur ; Toshimichi Otsubo, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] constellation GNSS
[Termes descripteurs IGN] données Galileo
[Termes descripteurs IGN] données Lageos
[Termes descripteurs IGN] données VGOS
[Termes descripteurs IGN] géocentre
[Termes descripteurs IGN] interférométrie à très grande base
[Termes descripteurs IGN] méthode de Monte-Carlo
[Termes descripteurs IGN] orbitographie
[Termes descripteurs IGN] paramètres d'orientation de la Terre
[Termes descripteurs IGN] quasar
[Termes descripteurs IGN] rotation de la TerreRésumé : (auteur) Recent efforts of tracking low Earth orbit and medium Earth orbit (MEO) satellites using geodetic very long baseline interferometry (VLBI) raise questions on the potential of this novel observation concept for space geodesy. Therefore, we carry out extensive Monte Carlo simulations in order to investigate the feasibility of geodetic VLBI for precise orbit determination (POD) of MEO satellites and assess the impact of quality and quantity of satellite observations on the derived geodetic parameters. The MEO satellites are represented in our study by LAGEOS-1/-2 and a set of Galileo satellites. The concept is studied on the basis of 3-day solutions in which satellite observations are included into real schedules of the continuous geodetic VLBI campaign 2017 (CONT17) as well as simulated schedules concerning the next-generation VLBI system, known as the VLBI Global Observing System (VGOS). Our results indicate that geodetic VLBI can perform on a comparable level as other space-geodetic techniques concerning POD of MEO satellites. For an assumed satellite observation precision better than 14.1 mm (47 ps), an average 3D orbit precision of 2.0 cm and 6.3 cm is found for schedules including LAGEOS-1/-2 and Galileo satellites, respectively. Moreover, geocenter offsets, which were so far out of scope for the geodetic VLBI analysis, are close to the detection limit for the simulations concerning VGOS observations of Galileo satellites, with the potential to further enhance the results. Concerning the estimated satellite orbits, VGOS leads to an average precision improvement of 80% with respect to legacy VLBI. In absolute terms and for satellite observation precision of 14.1 mm (47 ps), this corresponds to an average value of 17 mm and 7 mm concerning the 3D orbit scatter and precision of geocenter components, respectively. As shown in this study, a poor satellite geometry can degrade the derived Earth rotation parameters and VLBI station positions, compared to the quasar-only reference schedules. Therefore, careful scheduling of both quasar and satellite observations should be performed in order to fully benefit from this novel observation concept. Numéro de notice : A2020-342 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01381-9 date de publication en ligne : 11/06/2020 En ligne : https://doi.org/10.1007/s00190-020-01381-9 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95221
in Journal of geodesy > vol 94 n° 6 (June 2020)[article]Combinatorial optimization applied to VLBI scheduling / A. Corbin in Journal of geodesy, vol 94 n°2 (February 2020)
![]()
[article]
Titre : Combinatorial optimization applied to VLBI scheduling Type de document : Article/Communication Auteurs : A. Corbin, Auteur ; B. Niedermann, Auteur ; Axel Nothnagel, Auteur ; et al., Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] analyse combinatoire (maths)
[Termes descripteurs IGN] données VGOS
[Termes descripteurs IGN] interférométrie à très grande base
[Termes descripteurs IGN] positionnement par ITGB
[Termes descripteurs IGN] programmation linéaire
[Termes descripteurs IGN] retard troposphérique zénithal
[Termes descripteurs IGN] station VLBI
[Termes descripteurs IGN] téléscope
[Termes descripteurs IGN] temps universel coordonnéRésumé : (auteur) Due to the advent of powerful solvers, today linear programming has seen many applications in production and routing. In this publication, we present mixed-integer linear programming as applied to scheduling geodetic very-long-baseline interferometry (VLBI) observations. The approach uses combinatorial optimization and formulates the scheduling task as a mixed-integer linear program. Within this new method, the schedule is considered as an entity containing all possible observations of an observing session at the same time, leading to a global optimum. In our example, the optimum is found by maximizing the sky coverage score. The sky coverage score is computed by a hierarchical partitioning of the local sky above each telescope into a number of cells. Each cell including at least one observation adds a certain gain to the score. The method is computationally expensive and this publication may be ahead of its time for large networks and large numbers of VLBI observations. However, considering that developments of solvers for combinatorial optimization are progressing rapidly and that computers increase in performance, the usefulness of this approach may come up again in some distant future. Nevertheless, readers may be prompted to look into these optimization methods already today seeing that they are available also in the geodetic literature. The validity of the concept and the applicability of the logic are demonstrated by evaluating test schedules for five 1-h, single-baseline Intensive VLBI sessions. Compared to schedules that were produced with the scheduling software sked, the number of observations per session is increased on average by three observations and the simulated precision of UT1-UTC is improved in four out of five cases (6 μs average improvement in quadrature). Moreover, a simplified and thus much faster version of the mixed-integer linear program has been developed for modern VLBI Global Observing System telescopes. Numéro de notice : A2020-153 Affiliation des auteurs : non IGN Thématique : MATHEMATIQUE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01348-w date de publication en ligne : 29/01/2020 En ligne : https://doi.org/10.1007/s00190-020-01348-w Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94786
in Journal of geodesy > vol 94 n°2 (February 2020)[article]Systematic errors in SLR data and their impact on the ILRS products / Vincenza Luceri in Journal of geodesy, vol 93 n°11 (November 2019)
![]()
[article]
Titre : Systematic errors in SLR data and their impact on the ILRS products Type de document : Article/Communication Auteurs : Vincenza Luceri, Auteur ; M. Pirri, Auteur ; J. Rodriguez, Auteur ; et al., Auteur Année de publication : 2019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] acquisition de données
[Termes descripteurs IGN] contrôle qualité
[Termes descripteurs IGN] données TLS (télémétrie)
[Termes descripteurs IGN] erreur systématique
[Termes descripteurs IGN] interférométrie à très grande base
[Termes descripteurs IGN] International Terrestrial Reference Frame
[Termes descripteurs IGN] qualité des données
[Termes descripteurs IGN] rétroréflecteur
[Termes descripteurs IGN] station TLS (télémétrie)
[Termes descripteurs IGN] télémétrie laser sur satelliteRésumé : (auteur) The satellite laser ranging (SLR) technique has the potential to make extremely precise measurements to retroreflector arrays on orbiting satellites, with normal point range precision at a level of 1 mm for the core tracking stations of the International Laser Ranging Service (ILRS). The main limitation to achieving a similar level of range accuracy is the presence of uncorrected systematic errors, which can be attributed to various sources at the stations (e.g., calibration and/or synchronization procedures, hardware malfunctioning, nonlinearities in the time-of-flight measurement devices), as well as to modeling deficiencies, especially in the ability to refer the range measurements to the center of mass of the spacecraft. The ILRS has always been active in adopting rigorous procedures to detect and remove systematic errors from the data: a group of ILRS analysis centers routinely performs data quality control a few hours after data acquisition; the ILRS Analysis Standing Committee (ASC) is in charge of long-term monitoring and characterization of systematic errors in the observations used for the ILRS products; a Quality Control Board was established in 2015 to address SLR systems’ biases and other data issues. In particular, the ASC is devoting efforts on an investigation of an alternative approach whereby a simultaneous estimation of site coordinates and range biases provides station positions that are in principle free of systematic errors. Results using this approach have shown a significant impact on the realization of the TRF, in particular by reducing the existing scale offset between the VLBI and SLR solutions and reaching a closer agreement with the ITRF2014 scale. This paper outlines the work that continues to be done to improve these products and in particular focuses on new research to evaluate rigorously any impact on the strength of coordinate solutions and geophysical inferences when systematic range errors are determined simultaneously with reference frame parameters. Future procedures for handling systematic errors will be informed by the outcome of the current investigations. Numéro de notice : A2019-612 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-019-01319-w date de publication en ligne : 19/11/2019 En ligne : https://doi.org/10.1007/s00190-019-01319-w Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94800
in Journal of geodesy > vol 93 n°11 (November 2019)[article]Troposphere delay modeling with horizontal gradients for satellite laser ranging / M. Drożdżewski in Journal of geodesy, vol 93 n°10 (October 2019)
PermalinkModeling the VLBI delay for Earth satellites / Frédéric Jaron in Journal of geodesy, vol 93 n°7 (July 2019)
PermalinkLeast-squares cross-wavelet analysis and its applications in geophysical time series / Ebrahim Ghaderpour in Journal of geodesy, vol 92 n° 10 (October 2018)
PermalinkGeodetic VLBI with an artificial radio source on the Moon : a simulation study / Grzegorz Klopotek in Journal of geodesy, vol 92 n° 5 (May 2018)
PermalinkBasic Earth's Parameters as estimated from VLBI observations / Ping Zhu in Geodesy and Geodynamics, vol 8 n° 6 (November 2017)
PermalinkApplication of ray-traced tropospheric slant delays to geodetic VLBI analysis / Armin Hofmeister in Journal of geodesy, vol 91 n° 8 (August 2017)
PermalinkA global terrestrial reference frame from simulated VLBI and SLR data in view of GGOS / Susanne Glaser in Journal of geodesy, vol 91 n° 7 (July 2017)
PermalinkImproving the modeling of the atmospheric delay in the data analysis of the Intensive VLBI sessions and the impact on the UT1 estimates / Tobias Nilsson in Journal of geodesy, vol 91 n° 7 (July 2017)
PermalinkThe extension of the parametrization of the radio source coordinates in geodetic VLBI and its impact on the time series analysis / Maria Karbon in Journal of geodesy, vol 91 n° 7 (July 2017)
PermalinkOn the consistency of the current conventional EOP series and the celestial and terrestrial reference frames / Santiago Belda in Journal of geodesy, vol 91 n° 2 (February 2017)
Permalink