Descripteur
Documents disponibles dans cette catégorie (2427)


Etendre la recherche sur niveau(x) vers le bas
Street-view imagery guided street furniture inventory from mobile laser scanning point clouds / Yuzhou Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)
![]()
[article]
Titre : Street-view imagery guided street furniture inventory from mobile laser scanning point clouds Type de document : Article/Communication Auteurs : Yuzhou Zhou, Auteur ; Xu Han, Auteur ; Mingjun Peng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 63 - 77 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image Streetview
[Termes IGN] instance
[Termes IGN] inventaire
[Termes IGN] jeu de données localisées
[Termes IGN] masque
[Termes IGN] mobilier urbain
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] séparateur à vaste marge
[Termes IGN] Shanghai (Chine)
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Outdated or sketchy inventory of street furniture may misguide the planners on the renovation and upgrade of transportation infrastructures, thus posing potential threats to traffic safety. Previous studies have taken their steps using point clouds or street-view imagery (SVI) for street furniture inventory, but there remains a gap to balance semantic richness, localization accuracy and working efficiency. Therefore, this paper proposes an effective pipeline that combines SVI and point clouds for the inventory of street furniture. The proposed pipeline encompasses three steps: (1) Off-the-shelf street furniture detection models are applied on SVI for generating two-dimensional (2D) proposals and then three-dimensional (3D) point cloud frustums are accordingly cropped; (2) The instance mask and the instance 3D bounding box are predicted for each frustum using a multi-task neural network; (3) Frustums from adjacent perspectives are associated and fused via multi-object tracking, after which the object-centric instance segmentation outputs the final street furniture with 3D locations and semantic labels. This pipeline was validated on datasets collected in Shanghai and Wuhan, producing component-level street furniture inventory of nine classes. The instance-level mean recall and precision reach 86.4%, 80.9% and 83.2%, 87.8% respectively in Shanghai and Wuhan, and the point-level mean recall, precision, weighted coverage all exceed 73.7%. Numéro de notice : A2022-403 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2022.04.023 Date de publication en ligne : 12/05/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.04.023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100711
in ISPRS Journal of photogrammetry and remote sensing > vol 189 (July 2022) . - pp 63 - 77[article]Beyond single receptive field: A receptive field fusion-and-stratification network for airborne laser scanning point cloud classification / Yongqiang Mao in ISPRS Journal of photogrammetry and remote sensing, vol 188 (June 2022)
![]()
[article]
Titre : Beyond single receptive field: A receptive field fusion-and-stratification network for airborne laser scanning point cloud classification Type de document : Article/Communication Auteurs : Yongqiang Mao, Auteur ; Kaiqiang chen, Auteur ; Wenhui Diao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 45 - 61 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage automatique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données laser
[Termes IGN] données localisées 3D
[Termes IGN] Perceptron multicouche
[Termes IGN] représentation parcimonieuse
[Termes IGN] réseau neuronal de graphes
[Termes IGN] semis de points
[Termes IGN] stratification de données
[Termes IGN] voxelRésumé : (Auteur) The classification of airborne laser scanning (ALS) point clouds is a critical task of remote sensing and photogrammetry fields. Although recent deep learning-based methods have achieved satisfactory performance, they have ignored the unicity of the receptive field, which makes the ALS point cloud classification remain challenging for the distinguishment of the areas with complex structures and extreme scale variations. In this article, for the objective of configuring multi-receptive field features, we propose a novel receptive field fusion-and-stratification network (RFFS-Net). With a novel dilated graph convolution (DGConv) and its extension annular dilated convolution (ADConv) as basic building blocks, the receptive field fusion process is implemented with the dilated and annular graph fusion (DAGFusion) module, which obtains multi-receptive field feature representation through capturing dilated and annular graphs with various receptive regions. The stratification of the receptive fields with point sets of different resolutions as the calculation bases is performed with Multi-level Decoders nested in RFFS-Net and driven by the multi-level receptive field aggregation loss (MRFALoss) to drive the network to learn in the direction of the supervision labels with different resolutions. With receptive field fusion-and-stratification, RFFS-Net is more adaptable to the classification of regions with complex structures and extreme scale variations in large-scale ALS point clouds. Evaluated on the ISPRS Vaihingen 3D dataset, our RFFS-Net significantly outperforms the baseline (i.e. PointConv) approach by 5.3% on mF1 and 5.4% on mIoU, accomplishing an overall accuracy of 82.1%, an mF1 of 71.6%, and an mIoU of 58.2%. The experiments show that our RFFS-Net achieves a new state-of-the-art classification performance on powerline, car, and fence classes. Furthermore, experiments on the LASDU dataset and the 2019 IEEE-GRSS Data Fusion Contest dataset show that RFFS-Net achieves a new state-of-the-art classification performance. The code is available at github.com/WingkeungM/RFFS-Net. Numéro de notice : A2022-273 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.03.019 Date de publication en ligne : 07/04/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.03.019 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100532
in ISPRS Journal of photogrammetry and remote sensing > vol 188 (June 2022) . - pp 45 - 61[article]Direct and automatic measurements of stem curve and volume using a high-resolution airborne laser scanning system / Eric Hyyppä in Science of remote sensing, vol 5 (June 2022)
![]()
[article]
Titre : Direct and automatic measurements of stem curve and volume using a high-resolution airborne laser scanning system Type de document : Article/Communication Auteurs : Eric Hyyppä, Auteur ; Antero Kukko, Auteur ; Harri Kaartinen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100050 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] détection d'arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier local
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle numérique de terrain
[Termes IGN] Picea abies
[Termes IGN] semis de points
[Termes IGN] volume en boisRésumé : (auteur) Today, high-quality reference tree measurements, including the position, diameter, height and volume, are cumbersome and slow to carry out, but highly needed for forest inventories based on airborne laser scanning. Mobile laser scanning technologies hold the promise for collecting reference data for forest inventories with an extremely high efficiency. Perhaps, the most efficient approach for reference data collection would be to mount a high-resolution laser scanning system on board an airborne vehicle flying at a low altitude above the forest canopy since this would allow recording reference samples of individual trees with the speed of flight. To demonstrate the potential of this technology, we mounted an in-house developed HeliALS-DW laser scanning system on board a helicopter and collected point cloud data in a boreal forest on three test sites containing a total of 1469 trees. The obtained point clouds incorporated sufficiently many high-quality stem hits for estimating the stem curves and stem volumes of individual trees since the point clouds had a relatively high point density of 2200–3800 echoes/m2, and the scanner had been tilted by 15° from the nadir to increase the possibility of recording stem hits. To automatically estimate the diameters at breast height (DBH) and stem curves of individual trees, we used algorithms designed to tolerate moderate drifts in the trajectory of the laser scanner. Furthermore, the stem volumes of individual trees were computed by using the estimated stem curves and tree heights without any allometric models. Using the proposed methods, we were able to estimate the stem curves with a root-mean-square error (RMSE) of 1.7–2.6 cm (6–9%) while detecting 42–71% of the trees. The RMSE of stem volume estimates was 0.1–0.15 m3 (12–21%). We also showed that the tree detection rate could be improved up to 87–96% for trees with a DBH exceeding 20 cm if slightly larger average errors for the stem attributes were allowed. Our results pave the way for using high-resolution airborne laser scanning for field reference data collection by conducting direct measurements of tree stems with a high efficiency. Numéro de notice : A2022-298 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.srs.2022.100050 Date de publication en ligne : 09/04/2022 En ligne : https://doi.org/10.1016/j.srs.2022.100050 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100464
in Science of remote sensing > vol 5 (June 2022) . - n° 100050[article]Summarizing large scale 3D mesh for urban navigation / Imeen Ben Salah in Robotics and autonomous systems, vol 152 (June 2022)
![]()
[article]
Titre : Summarizing large scale 3D mesh for urban navigation Type de document : Article/Communication Auteurs : Imeen Ben Salah, Auteur ; Sébastien Kramm, Auteur ; Cédric Demonceaux, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104037 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme ICP
[Termes IGN] carte en 3D
[Termes IGN] données lidar
[Termes IGN] entropie
[Termes IGN] image hémisphérique
[Termes IGN] image RVB
[Termes IGN] information sémantique
[Termes IGN] localisation basée vision
[Termes IGN] maillage
[Termes IGN] navigation autonome
[Termes IGN] précision géométrique (imagerie)
[Termes IGN] précision radiométrique
[Termes IGN] profondeur
[Termes IGN] Rouen
[Termes IGN] saillance
[Termes IGN] zone urbaineRésumé : (auteur) Cameras have become increasingly common in vehicles, smartphones, and advanced driver assistance systems. The areas of application of these cameras in the world of intelligent transportation systems are becoming more and more varied: pedestrian detection, line crossing detection, navigation, …A major area of research currently focuses on mapping that is essential for localization and navigation. However, this step generates an important problem of memory management. Indeed, the memory space required to accommodate the map of a small city is measured in tens gigabytes. In addition, several providers today are competing to produce High-Definition (HD) maps. These maps offer a rich and detailed representation of the environment for highly accurate localization. However, they require a large storage capacity and high transmission and update costs. To overcome these problems, we propose a solution to summarize this type of map by reducing the size while maintaining the relevance of the data for navigation based on vision only. The summary consists in a set of spherical images augmented by depth and semantic information and allowing to keep the same level of visibility in every directions. These spheres are used as landmarks to offer guidance information to a distant agent. They then have to guarantee, at a lower cost, a good level of precision and speed during navigation. Some experiments on real data demonstrate the feasibility for obtaining a summarized map while maintaining a localization with interesting performances. Numéro de notice : A2022-290 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.robot.2022.104037 Date de publication en ligne : 03/02/2022 En ligne : https://doi.org/10.1016/j.robot.2022.104037 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100335
in Robotics and autonomous systems > vol 152 (June 2022) . - n° 104037[article]K-means clustering based on omnivariance attribute for building detection from airborne lidar data / Renato César Dos santos in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
![]()
[article]
Titre : K-means clustering based on omnivariance attribute for building detection from airborne lidar data Type de document : Article/Communication Auteurs : Renato César Dos santos, Auteur ; Mauricio Galo, Auteur ; A.F. Habib, Auteur Année de publication : 2022 Article en page(s) : pp 111 - 118 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification par nuées dynamiques
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] morphologie mathématiqueRésumé : (auteur) Building detection is an important process in urban applications. In the last decades, 3D point clouds derived from airborne LiDAR have been widely explored. In this paper, we propose a building detection method based on K-means clustering and the omnivariance attribute derived from eigenvalues. The main contributions lie on the automatic detection without the need for training and optimal neighborhood definition for local attribute estimation. Additionally, one refinement step based on mathematical morphology (MM) operators to minimize the classification errors (commission and omission errors) is proposed. The experiments were conducted in three study areas. In general, the results indicated the potential of proposed method, presenting an average Fscore around 97%. Numéro de notice : A2022-431 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-V-2-2022-111-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2022-111-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100737
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2022 (2022 edition) . - pp 111 - 118[article]Railway lidar semantic segmentation with axially symmetrical convolutional learning / Antoine Manier in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
Permalink3D lidar point-cloud projection operator and transfer machine learning for effective road surface features detection and segmentation / Heyang Thomas Li in The Visual Computer, vol 38 n° 5 (May 2022)
PermalinkCity3D: Large-scale building reconstruction from airborne LiDAR point clouds / Jin Huang in Remote sensing, vol 14 n° 9 (May-1 2022)
PermalinkDeveloping a data-fusing method for mapping fine-scale urban three-dimensional building structure / Xinxin Wu in Sustainable Cities and Society, vol 80 (May 2022)
PermalinkEfficient convolutional neural architecture search for LiDAR DSM classification / Aili Wang in IEEE Transactions on geoscience and remote sensing, vol 60 n° 5 (May 2022)
PermalinkFusion of optical, radar and waveform LiDAR observations for land cover classification / Huiran Jin in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)
PermalinkIndividual tree detection and estimation of stem attributes with mobile laser scanning along boreal forest roads / Raul de Paula Pires in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)
PermalinkWeakly supervised semantic segmentation of airborne laser scanning point clouds / Yaping Lin in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)
PermalinkWood decay detection in Norway spruce forests based on airborne hyperspectral and ALS data / Michele Dalponte in Remote sensing, vol 14 n° 8 (April-2 2022)
PermalinkAssessing surface drainage conditions at the street and neighborhood scale: A computer vision and flow direction method applied to lidar data / Cheng-Chun Lee in Computers, Environment and Urban Systems, vol 93 (April 2022)
Permalink