Descripteur
Termes IGN > géomatique > données localisées > données localisées des bénévoles
données localisées des bénévolesSynonyme(s)VGI données collaborativesVoir aussi |
Documents disponibles dans cette catégorie (384)



Etendre la recherche sur niveau(x) vers le bas
Towards global scale segmentation with OpenStreetMap and remote sensing / Munazza Usmani in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 8 (April 2023)
![]()
[article]
Titre : Towards global scale segmentation with OpenStreetMap and remote sensing Type de document : Article/Communication Auteurs : Munazza Usmani, Auteur ; Maurizio Napolitano, Auteur ; Francesca Bovolo, Auteur Année de publication : 2023 Article en page(s) : n° 100031 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bâtiment
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données localisées des bénévoles
[Termes IGN] image à haute résolution
[Termes IGN] information sémantique
[Termes IGN] occupation du sol
[Termes IGN] OpenStreetMap
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] utilisation du solRésumé : (auteur) Land Use Land Cover (LULC) segmentation is a famous application of remote sensing in an urban environment. Up-to-date and complete data are of major importance in this field. Although with some success, pixel-based segmentation remains challenging because of class variability. Due to the increasing popularity of crowd-sourcing projects, like OpenStreetMap, the need for user-generated content has also increased, providing a new prospect for LULC segmentation. We propose a deep-learning approach to segment objects in high-resolution imagery by using semantic crowdsource information. Due to satellite imagery and crowdsource database complexity, deep learning frameworks perform a significant role. This integration reduces computation and labor costs. Our methods are based on a fully convolutional neural network (CNN) that has been adapted for multi-source data processing. We discuss the use of data augmentation techniques and improvements to the training pipeline. We applied semantic (U-Net) and instance segmentation (Mask R-CNN) methods and, Mask R–CNN showed a significantly higher segmentation accuracy from both qualitative and quantitative viewpoints. The conducted methods reach 91% and 96% overall accuracy in building segmentation and 90% in road segmentation, demonstrating OSM and remote sensing complementarity and potential for city sensing applications. Numéro de notice : A2023-148 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ophoto.2023.100031 Date de publication en ligne : 16/02/2023 En ligne : https://doi.org/10.1016/j.ophoto.2023.100031 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102807
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 8 (April 2023) . - n° 100031[article]SALT: A multifeature ensemble learning framework for mapping urban functional zones from VGI data and VHR images / Hao Wu in Computers, Environment and Urban Systems, vol 100 (March 2023)
![]()
[article]
Titre : SALT: A multifeature ensemble learning framework for mapping urban functional zones from VGI data and VHR images Type de document : Article/Communication Auteurs : Hao Wu, Auteur ; Wenting Luo, Auteur ; Anqi Lin, Auteur ; Fanghua Hao, Auteur ; Ana-Maria Olteanu-Raimond , Auteur ; Lanfa Liu, Auteur ; Yan Li, Auteur
Année de publication : 2023 Projets : 1-Pas de projet / Article en page(s) : n° 101921 Note générale : Bibliographie
This work was supported by the National Natural Science Foundation of China [42201468, 42071358], Postdoctoral Innovation Talents Support Program of China [BX20220128], China Postdoctoral Science Foundation [2022M721283] and Fundamental Research Funds for the Central Universities [CCNU22QN018].Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multicritère
[Termes IGN] apprentissage automatique
[Termes IGN] boosting adapté
[Termes IGN] cartographie urbaine
[Termes IGN] Chine
[Termes IGN] détection du bâti
[Termes IGN] données localisées des bénévoles
[Termes IGN] image à très haute résolution
[Termes IGN] morphologie urbaine
[Termes IGN] OpenStreetMap
[Termes IGN] point d'intérêt
[Termes IGN] représentation spatiale
[Termes IGN] zone urbaineRésumé : (auteur) Urban functional zone mapping is essential for providing deeper insights into urban morphology and improving urban planning. The emergence of Volunteered Geographic Information (VGI), which provides abundant semantic data, offers a great opportunity to enrich land use information extracted from remote sensing (RS) images. Taking advantage of very-high-resolution (VHR) images and VGI data, this work proposed a SATL multifeature ensemble learning framework for mapping urban functional zones that integrated 65 features from the shapes of building objects, attributes of points of interest (POIs) tags, locations of cellphone users and textures of VHR images. The dimensionality of SALT features was reduced by the autoencoder, and the compressed features were applied to train the ensemble learning model composed of multiple classifiers for optimizing the urban functional zone classification. The effectiveness of the proposed framework was tested in an urbanized region of Nanchang City. The results indicated that the SALT features considering population dynamics and building shapes are comprehensive and feasible for urban functional zone mapping. The autoencoder has been proven efficient for dimension reduction of the original SALT features as it significantly improves the classification of urban functional zones. Moreover, the ensemble learning outperforms other machine learning models in terms of the accuracy and robustness when dealing with multi-classification tasks. Numéro de notice : A2023-125 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101921 Date de publication en ligne : 06/12/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101921 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102504
in Computers, Environment and Urban Systems > vol 100 (March 2023) . - n° 101921[article]Who owns the map? Data sovereignty and government spatial data collection, use, and dissemination / Peter A. Johnson in Transactions in GIS, vol 27 n° 1 (February 2023)
![]()
[article]
Titre : Who owns the map? Data sovereignty and government spatial data collection, use, and dissemination Type de document : Article/Communication Auteurs : Peter A. Johnson, Auteur ; Teresa Scassa, Auteur Année de publication : 2023 Article en page(s) : pp 275 - 289 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] carte
[Termes IGN] collecte de données
[Termes IGN] diffusion de données
[Termes IGN] domaine public
[Termes IGN] données localisées des bénévoles
[Termes IGN] données spatiotemporelles
[Termes IGN] droit d'auteur
[Termes IGN] OpenStreetMap
[Termes IGN] planification
[Termes IGN] pouvoirs publics
[Termes IGN] source de données
[Termes IGN] statut juridiqueRésumé : (auteur) Maps, created through the collection, assembly, and analysis of spatial data are used to support government planning and decision-making. Traditionally, spatial data used to create maps are collected, controlled, and disseminated by government, although over time, this role has shifted. This shift has been driven by the availability of alternate sources of data collected by private sector companies, and data contributed by volunteers to open mapping platforms, such as OpenStreetMap. In theorizing this shift, we provide examples of how governments use data sovereignty as a tool to shape spatial data collection, use, and sharing. We frame four models of how governments may navigate shifting spatial data sovereignty regimes; first, with government retaining complete control over data collection; second, with government contracting a third party to provide specific data collection services, but with data ownership and dissemination responsibilities resting with government; third, with government purchasing data under terms of access set by third party data collectors, who disseminate data to several parties, and finally, with government retreating from or relinquishing data sovereignty altogether. Within this rapidly changing landscape of data providers, we propose that governments must consider how to address data sovereignty concerns to retain their ability to control data use in the public interest. Numéro de notice : A2023-134 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.13024 Date de publication en ligne : 22/01/2023 En ligne : https://doi.org/10.1111/tgis.13024 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102680
in Transactions in GIS > vol 27 n° 1 (February 2023) . - pp 275 - 289[article]Evaluation of GNSS-based volunteered geographic information for assessing visitor spatial distribution within protected areas: A case study of the Bavarian Forest National Park, Germany / Laura Horst in Applied Geography, vol 150 (January 2023)
![]()
[article]
Titre : Evaluation of GNSS-based volunteered geographic information for assessing visitor spatial distribution within protected areas: A case study of the Bavarian Forest National Park, Germany Type de document : Article/Communication Auteurs : Laura Horst, Auteur ; Karolina Taczanowska, Auteur ; Florian Porst, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 102825 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] aire protégée
[Termes IGN] ArcGIS
[Termes IGN] Bavière (Allemagne)
[Termes IGN] distribution spatiale
[Termes IGN] données GNSS
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] géodatabase
[Termes IGN] parc naturel national
[Termes IGN] piétonRésumé : (auteur) Systematic monitoring of recreational use in vulnerable ecosystems is crucial to balance human needs and site capacities. Recently, publicly available digital data, including Global Navigation Satellite System-based Volunteered Geographic Information, gained attention as a potential resource depicting visitor movement. However, there is a need to critically assess its reliability for visitor monitoring across countries, regions and available databases. Our research evaluates the usability of GNSS-based VGI-data obtained from three common platforms: GPSies, Outdooractive, and Komoot for assessing the spatial distribution of hikers in the Bavarian Forest National Park. A total sample of 1742 GNSS-tracks uploaded between 2013 and 2018 were compared across data platforms. Additionally, available systematic field counts, carried out between 2013 and 2014 (11 Eco-Counter sensors), were compared to GNSS-based VGI data uploaded within the corresponding period. The comparisons at individual and collective levels (route lengths, kernel density, optimized hotspot analysis along with fishnet-based counts of GNSS-tracks) showed similarities between VGI data platforms. Data obtained from GPSies and Outdooractive displayed a higher correlation with each other than with those obtained from Komoot. Also, for GPSies, there was a significant positive correlation between VGI-data and field count data. Data sample of Outdooractive and Komoot within the specified spatio-temporal frame was too small to compare with available field count data. We highlight the necessity of systematic validation of GNSS-based VGI data resources, being complementary rather than the primary data source in visitor monitoring and recreation planning. Also, systematic long-term visitor monitoring using other methods is crucial to assess the validity of novel data resources, such as GNSS-based VGI. Numéro de notice : A2023-020 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.apgeog.2022.102825 Date de publication en ligne : 25/11/2023 En ligne : https://doi.org/10.1016/j.apgeog.2022.102825 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102220
in Applied Geography > vol 150 (January 2023) . - n° 102825[article]Semantic integration of OpenStreetMap and CityGML with formal concept analysis / Somayeh Ahmadian in Transactions in GIS, vol 26 n° 8 (December 2022)
![]()
[article]
Titre : Semantic integration of OpenStreetMap and CityGML with formal concept analysis Type de document : Article/Communication Auteurs : Somayeh Ahmadian, Auteur ; Parham Pahlavani, Auteur Année de publication : 2022 Article en page(s) : pp 3349 - 3373 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse de groupement
[Termes IGN] bâtiment
[Termes IGN] CityGML
[Termes IGN] classification par nuées dynamiques
[Termes IGN] données localisées des bénévoles
[Termes IGN] information sémantique
[Termes IGN] ontologie
[Termes IGN] OpenStreetMap
[Termes IGN] qualité des données
[Termes IGN] réseau sémantiqueRésumé : (auteur) Volunteered geographic information (VGI) provides geometric and descriptive sources of geospatial data. VGI exchange, reuse, and integration are serious challenges due to the subjective contribution process, lack of organization, and redundancy. This study aims to enhance the quality of VGI semantic data by presenting a new approach to integrating and formalizing the VGI semantic knowledge using formal concept analysis. The proposed approach is assessed using the building tags in OpenStreetMap (OSM) and CityGML. The alignment process discovers the conceptual overlap between the categories of Amenity (Others), Office, and Man-Made in Map Features (OSM) and Business and Trade, Recreation, Sport, and Industry in AbstractBuilding (CityGML). The k-means clustering of the results illustrated that class, usage/function, address, wheelchair, and website/wikidata/wikipedia are significant attributes to describe building categories. Moreover, results showed that the analysis of frequent itemsets and cluster characteristics provides significant information about custom tags in OSM's editing tools. Numéro de notice : A2022-909 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.13006 Date de publication en ligne : 02/12/2022 En ligne : https://doi.org/10.1111/tgis.13006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102347
in Transactions in GIS > vol 26 n° 8 (December 2022) . - pp 3349 - 3373[article]A new spatial database framework for pedestrian indoor navigation based on the OpenStreetMap tag information / Gift Dumedah in Transactions in GIS, vol 26 n° 7 (November 2022)
PermalinkAssuring the quality of VGI on land use and land cover: experiences and learnings from the LandSense project / Giles M. Foody in Geo-spatial Information Science, vol 25 n° inconnu ([01/08/2022])
PermalinkLocation-aware neural graph collaborative filtering / Shengwen Li in International journal of geographical information science IJGIS, vol 36 n° 8 (August 2022)
PermalinkQuality assessment of volunteered geographic information for outdoor activities: an analysis of OpenStreetMap data for names of peaks in Japan / Jun Yamashita in Geo-spatial Information Science, vol 25 n° inconnu ([01/08/2022])
PermalinkTransfer learning from citizen science photographs enables plant species identification in UAV imagery / Salim Soltani in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)
PermalinkIntegration of GNSS observations with volunteered geographic information for improved navigation performance / Tarek Hassan in Journal of applied geodesy, vol 16 n° 3 (July 2022)
PermalinkA participatory trail web map based on open source technologies / Joshua Gore in International journal of cartography, vol 8 n° 2 (July 2022)
PermalinkDetecting land use and land cover change on Barbuda before and after the Hurricane Irma with respect to potential land grabbing: A combined volunteered geographic information and multi sensor approach / Andreas Rienow in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
PermalinkMining crowdsourced trajectory and geo-tagged data for spatial-semantic road map construction / Jincai Huang in Transactions in GIS, vol 26 n° 2 (April 2022)
PermalinkVolunteered geographic information mobile application for participatory landslide inventory mapping / Raden Muhammad Anshori in Computers & geosciences, vol 161 (April 2022)
Permalink