Descripteur
Termes descripteurs IGN > informatique > données massives
données massivesSynonyme(s)données volumineuses |



Etendre la recherche sur niveau(x) vers le bas
Social media as passive geo-participation in transportation planning – how effective are topic modeling & sentiment analysis in comparison with citizen surveys? / Oliver Lock in Geo-spatial Information Science, vol 23 n° 4 (December 2020)
![]()
[article]
Titre : Social media as passive geo-participation in transportation planning – how effective are topic modeling & sentiment analysis in comparison with citizen surveys? Type de document : Article/Communication Auteurs : Oliver Lock, Auteur ; Chris Pettit, Auteur Année de publication : 2020 Article en page(s) : pp 275 - 292 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] artefact
[Termes descripteurs IGN] contenu généré par les utilisateurs
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] données massives
[Termes descripteurs IGN] planification urbaine
[Termes descripteurs IGN] réseau social
[Termes descripteurs IGN] sentiment
[Termes descripteurs IGN] Sydney (Nouvelle-Galles du Sud)
[Termes descripteurs IGN] traitement du langage naturel
[Termes descripteurs IGN] transport public
[Termes descripteurs IGN] ville intelligenteRésumé : (auteur) We live in an era of rapid urbanization as many cities are experiencing an unprecedented rate of population growth and congestion. Public transport is playing an increasingly important role in urban mobility with a need to move people and goods efficiently around the city. With such pressures on existing public transportation systems, this paper investigates the opportunities to use social media to more effectively engage with citizens and customers using such services. This research forms a case study of the use of passively collected forms of big data in cities – focusing on Sydney, Australia. Firstly, it examines social media data (Tweets) related to public transport performance. Secondly, it joins this to longitudinal big data – delay information continuously broadcast by the network over a year, thus forming hundreds of millions of data artifacts. Topics, tones, and sentiment are modeled using machine learning and Natural Language Processing (NLP) techniques. These resulting data, and models, are compared to opinions derived from a citizen survey among users. The validity of such data and models versus the intentions of users, in the context of systems that monitor and improve transport performance, are discussed. As such, key recommendations for developing Smart Cities were formed in an applied research context based on these data and techniques. Numéro de notice : A2020-787 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2020.1815596 date de publication en ligne : 21/09/2020 En ligne : https://doi.org/10.1080/10095020.2020.1815596 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96545
in Geo-spatial Information Science > vol 23 n° 4 (December 2020) . - pp 275 - 292[article]JS4Geo: a canonical JSON Schema for geographic data suitable to NoSQL databases / Angeol A. Frozza in Geoinformatica [en ligne], vol 24 n° 4 (October 2020)
![]()
[article]
Titre : JS4Geo: a canonical JSON Schema for geographic data suitable to NoSQL databases Type de document : Article/Communication Auteurs : Angeol A. Frozza, Auteur ; Ronaldo dos S. Mello, Auteur Année de publication : 2020 Article en page(s) : pp 987 - 1019 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes descripteurs IGN] base de données localisées
[Termes descripteurs IGN] données massives
[Termes descripteurs IGN] format JSON
[Termes descripteurs IGN] intégration de données
[Termes descripteurs IGN] interopérabilité
[Termes descripteurs IGN] NoSQL
[Termes descripteurs IGN] système d'information géographique
[Termes descripteurs IGN] système de gestion de base de donnéesRésumé : (Auteur) The large volume and variety of data produced in the current Big Data era lead companies to seek solutions for the efficient data management. Within this context, NoSQL databases rise as a better alternative to the traditional relational databases, mainly in terms of scalability and availability of data. A usual feature of NoSQL databases is to be schemaless, i.e., they do not impose a schema or have a flexible schema. This is interesting for systems that deal with complex data, such as GIS. However, the lack of a schema becomes a problem when applications need to perform processes such as data validation, data integration, or data interoperability, as there is no pattern for schema representation in NoSQL databases. On the other hand, the JSON language stands out as a standard for representing and exchanging data in document NoSQL databases, and JSON Schema is a schema representation language for JSON documents that it is also leading to become a standard. However, it does not include spatial data types. From this limitation, this paper proposes an extension to JSON Schema, called JS4Geo, that allows the definition of schemas for geographic data. We demonstrate that JS4Geo is able to represent schemas of any NoSQL data model, as well as other standards for geographic data, like GML and KML. We also present a case study that shows how a data integration system can benefit of JS4Geo to define local schemas for geographic datasets and generate an integrated global schema. Numéro de notice : A2020-497 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-020-00415-w date de publication en ligne : 27/06/2020 En ligne : https://doi.org/10.1007/s10707-020-00415-w Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96118
in Geoinformatica [en ligne] > vol 24 n° 4 (October 2020) . - pp 987 - 1019[article]Delineating and modeling activity space using geotagged social media data / Lingqian Hu in Cartography and Geographic Information Science, vol 47 n° 3 (May 2020)
![]()
[article]
Titre : Delineating and modeling activity space using geotagged social media data Type de document : Article/Communication Auteurs : Lingqian Hu, Auteur ; Zhenhong Li, Auteur ; Xinyue Ye, Auteur Année de publication : 2020 Article en page(s) : pp 277 - 288 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] distance
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] données massives
[Termes descripteurs IGN] données socio-économiques
[Termes descripteurs IGN] logement
[Termes descripteurs IGN] loisir
[Termes descripteurs IGN] Los Angeles
[Termes descripteurs IGN] quartier
[Termes descripteurs IGN] réseau social
[Termes descripteurs IGN] sport
[Termes descripteurs IGN] Twitter
[Termes descripteurs IGN] voisinage (topologie)
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) It has become increasingly important in spatial equity studies to understand activity spaces – where people conduct regular out-of-home activities. Big data can advance the identification of activity spaces and the understanding of spatial equity. Using the Los Angeles metropolitan area for the case study, this paper employs geotagged Twitter data to delineate activity spaces with two spatial measures: first, the average distance between users’ home location and activity locations; and second, the area covered between home and activity locations. The paper also finds significant relationship between the spatial measures of activity spaces and neighborhood spatial and socioeconomic characteristics. This research enriches the literature that aims to address spatial equity in activity spaces and demonstrates the applicability of big data in urban socio-spatial research. Numéro de notice : A2020-135 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2019.1705187 date de publication en ligne : 10/02/2020 En ligne : https://doi.org/10.1080/15230406.2019.1705187 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94843
in Cartography and Geographic Information Science > vol 47 n° 3 (May 2020) . - pp 277 - 288[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2020031 SL Revue Centre de documentation Revues en salle Disponible A framework for extracting urban functional regions based on multiprototype word embeddings using points-of-interest data / Sheng Hu in Computers, Environment and Urban Systems, vol 80 (March 2020)
![]()
[article]
Titre : A framework for extracting urban functional regions based on multiprototype word embeddings using points-of-interest data Type de document : Article/Communication Auteurs : Sheng Hu, Auteur ; Zhanjun He, Auteur ; Liang Wu, Auteur ; et al., Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] données massives
[Termes descripteurs IGN] espace urbain
[Termes descripteurs IGN] extraction de données
[Termes descripteurs IGN] gestion urbaine
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] point d'intérêt
[Termes descripteurs IGN] regroupement de données
[Termes descripteurs IGN] télédétection spatiale
[Termes descripteurs IGN] traitement du langage naturel
[Termes descripteurs IGN] Wuhan (Chine)
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) Many studies are in an effort to explore urban spatial structure, and urban functional regions have become the subject of increasing attention among planners, engineers and public officials. Attempts have been made to identify urban functional regions using high spatial resolution (HSR) remote sensing images and extensive geo-data. However, the research scale and throughput have also been limited by the accessibility of HSR remote sensing data. Recently, big geo-data are becoming increasingly popular for urban studies since research is still accessible and objective with regard to the use of these data. This study aims to build a novel framework to provide an alternative solution for sensing urban spatial structure and discovering urban functional regions based on emerging geo-data – points of interest (POIs) data and an embedding learning method in the natural language processing (NLP) field. We started by constructing the intraurban functional corpus using a center-context pairs-based approach. A word embeddings representation model for training that corpus was used to extract multiprototype vectors in the second step, and the last step aggregated the functional parcels based on an introduced spatial clustering method, hierarchical density-based spatial clustering of applications with noise (HDBSCAN). The clustering results suggested that our proposed framework used in this study is capable of discovering the utilization of urban space with a reasonable level of accuracy. The limitation and potential improvement of the proposed framework are also discussed. Numéro de notice : A2020-191 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2019.101442 date de publication en ligne : 15/11/2019 En ligne : https://doi.org/10.1016/j.compenvurbsys.2019.101442 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94853
in Computers, Environment and Urban Systems > vol 80 (March 2020)[article]
Titre : Distributed and parallel architectures for spatial data Type de document : Monographie Auteurs : Alberto Belussi, Editeur scientifique ; Sara Migliorini, Editeur scientifique ; Damiano Carra, Editeur scientifique ; et al., Auteur Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2020 Importance : 170 p. ISBN/ISSN/EAN : 978-3-03936-751-1 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes descripteurs IGN] base de données localisées
[Termes descripteurs IGN] collecte de données
[Termes descripteurs IGN] développement durable
[Termes descripteurs IGN] données localisées
[Termes descripteurs IGN] données massives
[Termes descripteurs IGN] entrepôt de données localisées
[Termes descripteurs IGN] geoportail
[Termes descripteurs IGN] Hadoop
[Termes descripteurs IGN] métadonnées
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] objet mobile
[Termes descripteurs IGN] OLAP
[Termes descripteurs IGN] OpenStreetMap
[Termes descripteurs IGN] PostGIS
[Termes descripteurs IGN] réseau social
[Termes descripteurs IGN] SQL
[Termes descripteurs IGN] système d'information géographique
[Termes descripteurs IGN] téléphone intelligent
[Termes descripteurs IGN] traitement parallèle
[Termes descripteurs IGN] zone tamponRésumé : (Editeur) [Préface] In recent years, an increasing amount of spatial data has been collected by different types of devices, such as mobile phones, sensors, satellites, space telescope, and medical tools for analysis, or is generated by social networks, such as geotagged tweets. The processing of this huge amount of information, including spatial properties, which are frequently represented in heterogeneous ways, is a challenging task that has boosted research in the big data area in an attempt to investigate cases and propose new solutions for dealing with its peculiarities. In the literature, many different proposals and approaches for facing the problem have been proposed, addressing different goals and different types of users. However, most are obtained by customizing existing approaches which were originally developed for the processing of big data of the alphanumeric type, without any specific support for spatial or spatiotemporal properties. Thus, the proposed solutions can exploit the parallelism provided by these kinds of systems, but without taking into account, in a proficient way, the space and time dimensions that intrinsically characterize the analyzed datasets. As described in the literature, current solutions include: (i) the on-top approach, where an underlying system for traditional big datasets is used as a black box while spatial processing is added through the definition of user-defined functions that are specified on top of the underlying system; (ii) the from-scratch approach, where a completely new system is implemented for a specific application context; and (iii) the built-in approach, where an existing solution is extended by injecting spatial data functions into its core. This book aims at promoting new and innovative studies, proposing new architectures or innovative evolutions of existing ones, and illustrating experiments on current technologies in order to improve the efficiency and effectiveness of distributed and cluster systems when they deal with spatiotemporal data. Note de contenu : Preface
1- Distributed Processing of Location-Based Aggregate Queries Using MapReduce
2- Towards the Development of Agenda 2063 Geo-Portal to Support Sustainable Development in Africa
3- HiBuffer: Buffer Analysis of 10-Million-Scale Spatial Data in Real Time
4- Mobility DataWarehouses
5- Parallelizing Multiple Flow Accumulation Algorithm using CUDA and OpenACC
6- LandQv2: A MapReduce-Based System for Processing Arable Land Quality Big Data
7- Mr4Soil: A MapReduce-Based Framework Integrated with GIS for Soil Erosion Modelling
8- High-Performance Geospatial Big Data Processing System Based on MapReduceNuméro de notice : 25884 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Monographie DOI : 10.3390/books978-3-03936-751-1 En ligne : https://doi.org/10.3390/books978-3-03936-751-1 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95762 PermalinkPermalinkPermalinkPermalinkSecurity risk management for the Internet of things: Technologies and techniques for IoT security, privacy and data protection / John Soldatos (2020)
PermalinkUnderstanding demographic and socioeconomic biases of geotagged Twitter users at the county level / Jiang Juqin in Cartography and Geographic Information Science, vol 46 n° 3 (May 2019)
PermalinkiTowns, le nouveau moteur de visualisation 3D de données géospatiales du Géoportail / Mirela Konini in Responsabilité et environnement, n° 94 (Avril 2019)
![]()
PermalinkGeographic space as a living structure for predicting human activities using big data / Bin Jiang in International journal of geographical information science IJGIS, Vol 33 n° 3-4 (March - April 2019)
PermalinkA methodology with a distributed algorithm for large-scale trajectory distribution prediction / QiuLei Guo in International journal of geographical information science IJGIS, Vol 33 n° 3-4 (March - April 2019)
Permalink(re)Considering Bertin in the age of big data and visual analytics / Alan M. MacEachren in Cartography and Geographic Information Science, vol 46 n° 2 (March 2019)
Permalink