Descripteur
Documents disponibles dans cette catégorie (180)



Etendre la recherche sur niveau(x) vers le bas
Interactive visual analytics of moving passenger flocks using massive smart card data / Tong Zhang in Cartography and Geographic Information Science, Vol 49 n° 4 (July 2022)
![]()
[article]
Titre : Interactive visual analytics of moving passenger flocks using massive smart card data Type de document : Article/Communication Auteurs : Tong Zhang, Auteur ; Wei He, Auteur ; Jing Huang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 354 - 369 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse spatiale
[Termes IGN] analyse visuelle
[Termes IGN] carte à puce
[Termes IGN] données massives
[Termes IGN] mobilité urbaine
[Termes IGN] objet mobile
[Termes IGN] Shenzhen
[Termes IGN] trajet (mobilité)
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Understanding urban mobility patterns is constrained by our limited capabilities to extract and visualize spatio-temporal regularities from large amounts of mobility data. Moving flocks, defined as groups of people traveling along over a pre-defined time duration, can reveal collective moving patterns at aggregated spatio-temporal scales, thereby facilitating the discovery of urban mobility structure and travel demand patterns. In this study, we extend classical trajectory-oriented flock mining algorithms to discover moving flocks of transit passengers, accounting for the constraints of multi-modal transit networks. We develop a map-centered visual analytics approach by integrating the flock mining algorithm with interactive visualization designs of discovered flocks. Novel interactive visualizations are designed and implemented to support the exploration and analyses of discovered moving flocks at different spatial and temporal scales. The visual analytics approach is evaluated using a real-world smart card dataset collected in Shenzhen City, China, validating its applicability in capturing and mapping dynamic mobility patterns over a large metropolitan area. Numéro de notice : A2022-480 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2022.2039775 Date de publication en ligne : 09/03/2022 En ligne : https://doi.org/10.1080/15230406.2022.2039775 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100886
in Cartography and Geographic Information Science > Vol 49 n° 4 (July 2022) . - pp 354 - 369[article]Analysis of massive imports of open data in Openstreetmap database: a study case for France / Arnaud Le Guilcher in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-4-2022 (2022 edition)
![]()
[article]
Titre : Analysis of massive imports of open data in Openstreetmap database: a study case for France Type de document : Article/Communication Auteurs : Arnaud Le Guilcher , Auteur ; Ana-Maria Olteanu-Raimond
, Auteur ; Mamadou Bailo Balde, Auteur
Année de publication : 2022 Projets : 1-Pas de projet / Article en page(s) : pp 99 - 106 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] analyse de données
[Termes IGN] analyse diachronique
[Termes IGN] caractérisation
[Termes IGN] données massives
[Termes IGN] import de données
[Termes IGN] OpenStreetMap
[Termes IGN] qualité des données
[Termes IGN] réseau routierRésumé : (auteur) Importing spatial open data in OpenStreetMap (OSM) project, is a practice that has existed from the beginning of the project. The rapid development and multiplication of collaborative mapping tools and open data have led to the growth of the phenomenon of importing massive data into OSM. The goal of this paper is to study the evolution of the massive imports over time. We propose an approach in three steps: classification of the sources used to edit features in the OSM platform including those massively imported, classification of modifications, and identification of evolution patterns. The approach is mixing global analysis (i.e. sources and modifications are classified) and feature based analysis (i.e. imported features are analyzed with respect to their evolution over time). The approach is applied on three datasets coming from OSM considered for their heterogeneity in terms of complexity, imports, and spatial and temporal characteristics. The results show that there is a sustained activity of edition on imported features, with a ratio between geometry editions and semantic editions depending on the type of the features, with roads being the features concentrating the most activity. Numéro de notice : A2022-422 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-4-2022-99-2022 Date de publication en ligne : 18/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-4-2022-99-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100726
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-4-2022 (2022 edition) . - pp 99 - 106[article]Emerging technologies for smart cities’ transportation: Geo-information, data analytics and machine learning approaches / Li-Minn Ang in ISPRS International journal of geo-information, vol 11 n° 2 (February 2022)
![]()
[article]
Titre : Emerging technologies for smart cities’ transportation: Geo-information, data analytics and machine learning approaches Type de document : Article/Communication Auteurs : Li-Minn Ang, Auteur ; Jasmine Kah Phooi Seng, Auteur ; Ericmoore Ngharamike, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 85 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] données massives
[Termes IGN] planification urbaine
[Termes IGN] système de transport intelligent
[Termes IGN] trafic routier
[Termes IGN] transport collectif
[Termes IGN] transport urbain
[Termes IGN] ville intelligente
[Termes IGN] zone urbaineRésumé : (auteur) With the recent increase in urban drift, which has led to an unprecedented surge in urban population, the smart city (SC) transportation industry faces a myriad of challenges, including the development of efficient strategies to utilize available infrastructures and minimize traffic. There is, therefore, the need to devise efficient transportation strategies to tackle the issues affecting the SC transportation industry. This paper reviews the state-of-the-art for SC transportation techniques and approaches. The paper gives a comprehensive review and discussion with a focus on emerging technologies from several information and data-driven perspectives including (1) geoinformation approaches; (2) data analytics approaches; (3) machine learning approaches; (4) integrated deep learning approaches; (5) artificial intelligence (AI) approaches. The paper contains core discussions on the impacts of geo-information on SC transportation, data-driven transportation and big data technology, machine learning approaches for SC transportation, innovative artificial intelligence (AI) approaches for SC transportation, and recent trends revealed by using integrated deep learning towards SC transportation. This survey paper aimed to give useful insights to researchers regarding the roles that data-driven approaches can be utilized for in smart cities (SCs) and transportation. An objective of this paper was to acquaint researchers with the recent trends and emerging technologies for SC transportation applications, and to give useful insights to researchers on how these technologies can be exploited for SC transportation strategies. To the best of our knowledge, this is the first comprehensive review that examines the impacts of the various five driving technological forces—geoinformation, data-driven and big data technology, machine learning, integrated deep learning, and AI—in the context of SC transportation applications. Numéro de notice : A2022-118 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11020085 Date de publication en ligne : 24/01/2022 En ligne : https://doi.org/10.3390/ijgi11020085 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99649
in ISPRS International journal of geo-information > vol 11 n° 2 (February 2022) . - n° 85[article]Cultivating historical heritage area vitality using urban morphology approach based on big data and machine learning / Jiayu Wu in Computers, Environment and Urban Systems, vol 91 (January 2022)
![]()
[article]
Titre : Cultivating historical heritage area vitality using urban morphology approach based on big data and machine learning Type de document : Article/Communication Auteurs : Jiayu Wu, Auteur ; Yutian Lu, Auteur ; Hei Gao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101716 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] Chine
[Termes IGN] conservation du patrimoine
[Termes IGN] distribution spatiale
[Termes IGN] données massives
[Termes IGN] échantillonnage de données
[Termes IGN] Extreme Gradient Machine
[Termes IGN] morphologie urbaine
[Termes IGN] patrimoine culturel
[Termes IGN] planification urbaine
[Termes IGN] point d'intérêt
[Termes IGN] régularisation de Tychonoff
[Termes IGN] variation diurneRésumé : (auteur) The conservation of historical heritage can bring social benefits to cities by promoting community economic development and societal creativity. In the early stages of historical heritage conservation, the focus was on the museum-style concept for individual structures. At present, heritage area vitality is often adopted as a general conservation method to increase the vibrancy of such areas. However, it remains unclear whether urban morphological elements suitable for urban areas can be applied to heritage areas. This study uses ridge regression and LightGBM with multi-source big geospatial data to explore whether urban morphological elements that affect the vitality of heritage and urban areas are consistent or have different spatial distributions and daily variations. From a sample of 12 Chinese cities, our analysis shows the following results. First, factors affecting urban vitality differ from those influencing heritage areas. Second, factors influencing urban and heritage areas' vitality have diurnal variations and differ across cities. The overarching contribution of this study is to propose a quantitative and replicable framework for heritage adaptation, combining urban morphology and vitality measures derived from big geospatial data. This study also extends the understanding of forms of heritage areas and provides theoretical support for heritage conservation, urban construction, and economic development. Numéro de notice : A2022-007 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101716 Date de publication en ligne : 30/09/2021 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101716 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99048
in Computers, Environment and Urban Systems > vol 91 (January 2022) . - n° 101716[article]Detecting and visualizing observation hot-spots in massive volunteer-contributed geographic data across spatial scales using GPU-accelerated kernel density estimation / Guiming Zhang in ISPRS International journal of geo-information, vol 11 n° 1 (January 2022)
![]()
[article]
Titre : Detecting and visualizing observation hot-spots in massive volunteer-contributed geographic data across spatial scales using GPU-accelerated kernel density estimation Type de document : Article/Communication Auteurs : Guiming Zhang, Auteur Année de publication : 2022 Article en page(s) : n° 55 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] données localisées des bénévoles
[Termes IGN] données massives
[Termes IGN] estimation par noyau
[Termes IGN] exploration de données géographiques
[Termes IGN] géovisualisation
[Termes IGN] processeur graphique
[Termes IGN] qualité des données
[Termes IGN] réseau social
[Termes IGN] tâche claireRésumé : (auteur) Volunteer-contributed geographic data (VGI) is an important source of geospatial big data that support research and applications. A major concern on VGI data quality is that the underlying observation processes are inherently biased. Detecting observation hot-spots thus helps better understand the bias. Enabled by the parallel kernel density estimation (KDE) computational tool that can run on multiple GPUs (graphics processing units), this study conducted point pattern analyses on tens of millions of iNaturalist observations to detect and visualize volunteers’ observation hot-spots across spatial scales. It was achieved by setting varying KDE bandwidths in accordance with the spatial scales at which hot-spots are to be detected. The succession of estimated density surfaces were then rendered at a sequence of map scales for visual detection of hot-spots. This study offers an effective geovisualization scheme for hierarchically detecting hot-spots in massive VGI datasets, which is useful for understanding the pattern-shaping drivers that operate at multiple spatial scales. This research exemplifies a computational tool that is supported by high-performance computing and capable of efficiently detecting and visualizing multi-scale hot-spots in geospatial big data and contributes to expanding the toolbox for geospatial big data analytics. Numéro de notice : A2022-091 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11010055 Date de publication en ligne : 12/01/2022 En ligne : https://doi.org/10.3390/ijgi11010055 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99507
in ISPRS International journal of geo-information > vol 11 n° 1 (January 2022) . - n° 55[article]Learning multi-view aggregation in the wild for large-scale 3D semantic segmentation / Damien Robert (2022)
PermalinkPermalinkAnalytics of location-based big data for smart cities: Opportunities, challenges, and future directions / Haosheng Huang in Computers, Environment and Urban Systems, vol 90 (November 2021)
PermalinkPermalinkThe geography of social media data in urban areas: Representativeness and complementarity / Alvaro Bernabeu-Bautista in ISPRS International journal of geo-information, vol 10 n° 11 (November 2021)
PermalinkDisaster Image Classification by Fusing Multimodal Social Media Data / Zhiqiang Zou in ISPRS International journal of geo-information, vol 10 n° 10 (October 2021)
PermalinkMapping essential urban land use categories with open big data: Results for five metropolitan areas in the United States of America / Bin Chen in ISPRS Journal of photogrammetry and remote sensing, vol 178 (August 2021)
PermalinkDigital camera calibration for cultural heritage documentation: the case study of a mass digitization project of religious monuments in Cyprus / Evagoras Evagorou in European journal of remote sensing, vol 54 sup 1 (2021)
PermalinkLa géovisualisation de données massives sur le Web : entre avancées technologiques et évolutions cartographiques / Boris Mericskay in Mappemonde [en ligne], n° 131 (juillet 2021)
PermalinkQuality assessment of heterogeneous training data sets for classification of urban area with Landsat imagery / Neema Nicodemus Lyimo in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 5 (May 2021)
Permalink