Descripteur
Termes descripteurs IGN > sciences naturelles > physique > traitement d'image > traitement d'image radar > polarimétrie radar > données polarimétriques
données polarimétriques |



Etendre la recherche sur niveau(x) vers le bas
Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning / Maryam Pourshamsi in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
![]()
[article]
Titre : Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning Type de document : Article/Communication Auteurs : Maryam Pourshamsi, Auteur ; Junshi Xia, Auteur ; Naoto Yokoya, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 79 - 94 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] bande L
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] forêt tropicale
[Termes descripteurs IGN] Gabon
[Termes descripteurs IGN] hauteur des arbres
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] Rotation Forest classification
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) Forest height is an important forest biophysical parameter which is used to derive important information about forest ecosystems, such as forest above ground biomass. In this paper, the potential of combining Polarimetric Synthetic Aperture Radar (PolSAR) variables with LiDAR measurements for forest height estimation is investigated. This will be conducted using different machine learning algorithms including Random Forest (RFs), Rotation Forest (RoFs), Canonical Correlation Forest (CCFs) and Support Vector Machine (SVMs). Various PolSAR parameters are required as input variables to ensure a successful height retrieval across different forest heights ranges. The algorithms are trained with 5000 LiDAR samples (less than 1% of the full scene) and different polarimetric variables. To examine the dependency of the algorithm on input training samples, three different subsets are identified which each includes different features: subset 1 is quiet diverse and includes non-vegetated region, short/sparse vegetation (0–20 m), vegetation with mid-range height (20–40 m) to tall/dense ones (40–60 m); subset 2 covers mostly the dense vegetated area with height ranges 40–60 m; and subset 3 mostly covers the non-vegetated to short/sparse vegetation (0–20 m) .The trained algorithms were used to estimate the height for the areas outside the identified subset. The results were validated with independent samples of LiDAR-derived height showing high accuracy (with the average R2 = 0.70 and RMSE = 10 m between all the algorithms and different training samples). The results confirm that it is possible to estimate forest canopy height using PolSAR parameters together with a small coverage of LiDAR height as training data. Numéro de notice : A2021-086 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.008 date de publication en ligne : 19/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.008 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96846
in ISPRS Journal of photogrammetry and remote sensing > Vol 172 (February 2021) . - pp 79 - 94[article]L-band SAR for estimating aboveground biomass of rubber plantation in Java Island, Indonesia / Bambang H Trisasongko in Geocarto international, vol 35 n° 12 ([01/09/2020])
![]()
[article]
Titre : L-band SAR for estimating aboveground biomass of rubber plantation in Java Island, Indonesia Type de document : Article/Communication Auteurs : Bambang H Trisasongko, Auteur ; David J. Paull, Auteur Année de publication : 2020 Article en page(s) : pp 1327 - 1342 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] arbre hors forêt
[Termes descripteurs IGN] bande L
[Termes descripteurs IGN] biomasse aérienne
[Termes descripteurs IGN] carbone
[Termes descripteurs IGN] données allométriques
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] image ALOS-PALSAR
[Termes descripteurs IGN] Java (île de)Résumé : (auteur) This article discusses an experiment on the estimation of rubber tree biomass using L-band Synthetic Aperture Radar (SAR), to support recent efforts to include trees outside forest in global biomass and carbon accounting. We noted that date of acquisition is important, but certainly the selection of allometric equation serving as the reference data was paramount. Similarly, choosing a proper form of fully polarimetric data was instrumental, although this requires validation in different environmental settings. As expected, modern data mining approaches consistently delivered high accuracy. Extreme learning machine yielded the best estimate in terms of R2 (0.98) and RMSE (1.88 Mg/ha); nonetheless, it also delivered a slight negative estimation. In this case, we found that a variant of random forest produced an outcome without any negative estimation. This research suggests that estimated biomass or carbon information from rubber plantations would be an invaluable candidate for the improvement of global biomass data. Numéro de notice : A2020-480 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1573855 date de publication en ligne : 18/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1573855 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95630
in Geocarto international > vol 35 n° 12 [01/09/2020] . - pp 1327 - 1342[article]Polarimetric SAR calibration and residual error estimation when corner reflectors are unavailable / Lei Shi in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
![]()
[article]
Titre : Polarimetric SAR calibration and residual error estimation when corner reflectors are unavailable Type de document : Article/Communication Auteurs : Lei Shi, Auteur ; Pingxiang Li, Auteur ; Jie Yang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 4454 - 4471 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] bruit (théorie du signal)
[Termes descripteurs IGN] coin réflecteur
[Termes descripteurs IGN] dégradation du signal
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] étalonnage
[Termes descripteurs IGN] extraction automatique
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] interruption du signal
[Termes descripteurs IGN] polarimétrie radar
[Termes descripteurs IGN] polarisation croisée
[Termes descripteurs IGN] rétrodiffusion de BraggRésumé : (auteur) In this article, we propose a polarimetric calibration (PolCal) algorithm to estimate the system crosstalk, cross-polarization (x-pol), and co-polarization (co-pol) channel imbalance (CI) when ground corner reflectors (CRs) are unavailable. The current PolCal process requires at least one trihedral CR to determine the co-pol CI. However, the deployment of ground CRs is costly and may even be impossible in some areas. To calibrate a polarimetric image without CRs, our proposed method automatically extracts the volume-dominated and Bragg-like pixels as a reference to estimate the crosstalk, x-pol, and co-pol CI values. Then, a first-order polynomial model is exploited to fit the co-pol CI to further improve calibration accuracy. In the experimental section, we demonstrate the effectiveness of our proposed method with data from two of China’s newly developed very high-resolution systems. The experiments confirmed that the proposed workflow can be considered as a feasible calibration scheme when the ground deployment of CRs is impossible, and it is also an effective analysis tool for the assessment of calibrated products. Numéro de notice : A2020-286 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2964732 date de publication en ligne : 20/01/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2964732 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95109
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020) . - pp 4454 - 4471[article]Fusing adjacent-track InSAR datasets to densify the temporal resolution of time-series 3-D displacement estimation over mining areas with a prior deformation model and a generalized weighting least-squares method / Yuedong Wang in Journal of geodesy, vol 94 n° 5 (May 2020)
![]()
[article]
Titre : Fusing adjacent-track InSAR datasets to densify the temporal resolution of time-series 3-D displacement estimation over mining areas with a prior deformation model and a generalized weighting least-squares method Type de document : Article/Communication Auteurs : Yuedong Wang, Auteur ; Zefa Yang, Auteur ; Zhiwei Li, Auteur ; et al., Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] analyse des risques
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] déformation de la croute terrestre
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] échantillonnage de données
[Termes descripteurs IGN] image ALOS-PALSAR
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] interféromètrie par radar à antenne synthétique
[Termes descripteurs IGN] méthode des moindres carrés
[Termes descripteurs IGN] mine de charbon
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance géologiqueRésumé : (auteur) Interferometric synthetic aperture radar (InSAR) technology can be used to observe high spatial resolution one-dimensional (1-D) deformation along the line-of-sight direction from a single-track synthetic aperture radar (SAR) dataset. With the aid of multi-track InSAR data or a prior model, InSAR can be extended to infer 3-D deformation information, but the temporal resolution is generally limited. This paper presents an InSAR-based method to retrieve high spatio-temporal resolution 3-D displacements over mining areas (hereafter referred to as the MTI-based method). The core idea of the proposed method is to enhance the temporal resolution of the time-series 3-D displacement estimates by fusing multi-track InSAR observations and a prior model. Firstly, we retrieve high spatial resolution 3-D mining displacements from single-track InSAR 1-D deformation observations, with the assistance of the prior deformation model. By applying this approach to multi-track InSAR data over the same area, we obtain much denser 3-D mining displacement samples in time than those derived from a single-track InSAR dataset. Secondly, we propose a generalized weighted least-squares method to integrate the denser 3-D displacement samples, to solve the high temporal resolution 3-D mining displacements, in which the rank deficiency needs to be tackled. Finally, time-series 3-D mining displacements at the chronological dates of all the available multi-track SAR images are estimated. The Yungang coal mining area of China was selected to test the proposed method using two adjacent-track ALOS PALSAR-1 datasets. Compared with the single-track InSAR-derived results, the proposed method not only significantly improves the temporal resolution of the monitoring results by 42.6%, obtaining more detailed 3-D displacements, but it also provides important data support for understanding and modeling the distinctive kinematics of mining deformation and assessing mining-related geohazards. What is more, the core idea of the proposed method will be beneficial to high spatio-temporal resolution 3-D deformation estimation in other geophysical processes. Numéro de notice : A2020-239 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01374-8 date de publication en ligne : 23/04/2020 En ligne : https://doi.org/10.1007/s00190-020-01374-8 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94992
in Journal of geodesy > vol 94 n° 5 (May 2020)[article]Identification of alpine glaciers in the central Himalayas using fully polarimetric L-Band SAR data / Guo-Hui Yao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)
![]()
[article]
Titre : Identification of alpine glaciers in the central Himalayas using fully polarimetric L-Band SAR data Type de document : Article/Communication Auteurs : Guo-Hui Yao, Auteur ; Chang-qing Ke, Auteur ; Xiaobing Zhou, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 691 - 703 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] analyse multiéchelle
[Termes descripteurs IGN] bande L
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] glacier
[Termes descripteurs IGN] Himalaya
[Termes descripteurs IGN] image ALOS-PALSAR
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] interferométrie différentielle
[Termes descripteurs IGN] matrice de covariance
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] segmentationRésumé : (auteur) To study the applicability of full polarimetric synthetic aperture radar (SAR) data to identify alpine glaciers in the central Himalayas, six polarimetric decomposition methods were used to obtain 20 polarimetric characteristic parameters based on the Advanced Land Observing Satellite 2 (ALOS-2) Phased Array type L-band SAR (PALSAR) data. Object-oriented multiscale segmentation was performed on a Landsat 8 Operational Land Imager (OLI) image prior to classification, and the vector boundaries of different types of training samples were selected from the segmented results. We performed a support vector machine (SVM)-based classification on the characteristic parameters from each polarimetric decomposition. All 20 parameters were then screened and combined according to different requirements: the degree of separability of different types of training samples and the type of scattering mechanisms. The results show that the classification accuracy of the incoherent decomposition characteristics based on the covariance matrix is the best, reaching 87%, and it can exceed 91% after adding the local incidence angle to the suite of classifiers. Eventually, more than 93% accuracy was achieved using a combination of multiple polarimetric parameters, which reduced the misclassification between bare ice and rock. We also analyzed the use of controlling factors on the accuracy of alpine glacier identification and found that the polarimetric information and aspect of the glacier surface are the most important factors. The former is the main basis for identification but the latter will confuse the feature distributions of different categories and cause misclassification. Numéro de notice : A2020-077 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2939430 date de publication en ligne : 25/09/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2939430 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94613
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 1 (January 2020) . - pp 691 - 703[article]Polarization dependence of azimuth cutoff from quad-pol SAR images / Huimin Li in IEEE Transactions on geoscience and remote sensing, vol 57 n° 12 (December 2019)
PermalinkSoil and vegetation scattering contributions in L-Band and P-Band polarimetric SAR observations / S. Hamed Alemohammad in IEEE Transactions on geoscience and remote sensing, vol 57 n° 11 (November 2019)
PermalinkThe cause of the 2011 Hawthorne (Nevada) earthquake swarm constrained by seismic and InSAR methods / Xianjie Zha in Journal of geodesy, vol 93 n°6 (June 2019)
PermalinkUsing Sentinel-1A DInSAR interferometry and Landsat 8 data for monitoring water level changes in two lakes in Crete, Greece / D.D. Alexakis in Geocarto international, vol 34 n° 7 ([01/06/2019])
PermalinkDeveloping a subswath-based wind speed retrieval model for sentinel-1 VH-Polarized SAR data over the ocean surface / Kangyu Zhang in IEEE Transactions on geoscience and remote sensing, vol 57 n° 3 (March 2019)
PermalinkEvaluation of time-series SAR and optical images for the study of winter land-use / Julien Denize (2019)
PermalinkLong-term land deformation monitoring using quasi-persistent scatterer (Q-PS) technique observed by sentinel-1A : case study Kelok Sembilan / Pakhrur Razi in Advances in Remote Sensing, vol 7 n° 4 (December 2018)
PermalinkPolarization orientation angle and polarimetric SAR scattering characteristics of steep terrain / Jong-Sen Lee in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
PermalinkPotential of Sentinel-1 data for monitoring temperate mixed forest phenology / Pierre-Louis Frison in Remote sensing, vol 10 n° 12 (December 2018)
PermalinkSeparating the influence of vegetation changes in polarimetric differential SAR interferometry / Virginia Brancato in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
Permalink