Descripteur
Termes descripteurs IGN > sciences naturelles > physique > traitement d'image > traitement d'image radar > polarimétrie radar > données polarimétriques
données polarimétriques |



Etendre la recherche sur niveau(x) vers le bas
On the polarimetric variable improvement via alignment of subarray channels in PPAR using weather returns / Igor R. Ivić in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
![]()
[article]
Titre : On the polarimetric variable improvement via alignment of subarray channels in PPAR using weather returns Type de document : Article/Communication Auteurs : Igor R. Ivić, Auteur Année de publication : 2021 Article en page(s) : pp 2015 - 2027 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes descripteurs IGN] antenne radar
[Termes descripteurs IGN] coefficient de corrélation
[Termes descripteurs IGN] données météorologiques
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] écho radar
[Termes descripteurs IGN] faisceau
[Termes descripteurs IGN] mesurage de phase
[Termes descripteurs IGN] oscillateur
[Termes descripteurs IGN] polarimétrie radar
[Termes descripteurs IGN] variance de phaseRésumé : (Auteur) Many modern phased-array radars (PARs) are multichannel systems that include multiple receivers for data acquisition. Each channel provides a signal from a group of Transmit/Receive modules comprising a section of the antenna. Channels typically consist of a full receive path, often with an independent local oscillator (LO) clock source. Such arrangement provides for beamforming flexibility on receive which can be applied in a digital domain. Consequently, the channel-to-channel phase and magnitude alignment is critical to maximizing the performance of the digital beamforming process and the accuracy of resulting detections and measurements. Herein, a novel method to improve such alignment using weather returns and achieve the improvement in the polarimetric variable estimates is described. Numéro de notice : A2021-213 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3003293 date de publication en ligne : 10/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3003293 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97201
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2015 - 2027[article]Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning / Maryam Pourshamsi in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
![]()
[article]
Titre : Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning Type de document : Article/Communication Auteurs : Maryam Pourshamsi, Auteur ; Junshi Xia, Auteur ; Naoto Yokoya, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 79 - 94 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] bande L
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] forêt tropicale
[Termes descripteurs IGN] Gabon
[Termes descripteurs IGN] hauteur des arbres
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] Rotation Forest classification
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) Forest height is an important forest biophysical parameter which is used to derive important information about forest ecosystems, such as forest above ground biomass. In this paper, the potential of combining Polarimetric Synthetic Aperture Radar (PolSAR) variables with LiDAR measurements for forest height estimation is investigated. This will be conducted using different machine learning algorithms including Random Forest (RFs), Rotation Forest (RoFs), Canonical Correlation Forest (CCFs) and Support Vector Machine (SVMs). Various PolSAR parameters are required as input variables to ensure a successful height retrieval across different forest heights ranges. The algorithms are trained with 5000 LiDAR samples (less than 1% of the full scene) and different polarimetric variables. To examine the dependency of the algorithm on input training samples, three different subsets are identified which each includes different features: subset 1 is quiet diverse and includes non-vegetated region, short/sparse vegetation (0–20 m), vegetation with mid-range height (20–40 m) to tall/dense ones (40–60 m); subset 2 covers mostly the dense vegetated area with height ranges 40–60 m; and subset 3 mostly covers the non-vegetated to short/sparse vegetation (0–20 m) .The trained algorithms were used to estimate the height for the areas outside the identified subset. The results were validated with independent samples of LiDAR-derived height showing high accuracy (with the average R2 = 0.70 and RMSE = 10 m between all the algorithms and different training samples). The results confirm that it is possible to estimate forest canopy height using PolSAR parameters together with a small coverage of LiDAR height as training data. Numéro de notice : A2021-086 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.008 date de publication en ligne : 19/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.008 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96846
in ISPRS Journal of photogrammetry and remote sensing > Vol 172 (February 2021) . - pp 79 - 94[article]Monitoring of wheat crops using the backscattering coefficient and the interferometric coherence derived from Sentinel-1 in semi-arid areas / Nadia Ouaadi in Remote sensing of environment, Vol 251 (15 December 2020)
![]()
[article]
Titre : Monitoring of wheat crops using the backscattering coefficient and the interferometric coherence derived from Sentinel-1 in semi-arid areas Type de document : Article/Communication Auteurs : Nadia Ouaadi, Auteur ; Lionel Jarlan, Auteur ; Jamal Ezzahar, Auteur ; Mehrez Zribi, Auteur ; Saïd Khabba, Auteur ; Elhoussaine Bouras, Auteur ; Safa Bousbih, Auteur ; Pierre-Louis Frison , Auteur
Année de publication : 2020 Projets : 3-projet - voir note / Article en page(s) : n° 112050 Note générale : bibliographie
This work was conducted within the frame of the International Joint Laboratory TREMA (https://www.lmi-trema.ma/). The authors wish to thank the projects: Rise-H2020-ACCWA (grant agreement no: 823965) and ERANETMED03-62 CHAAMS for partly funding the experiments.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] bande C
[Termes descripteurs IGN] blé (céréale)
[Termes descripteurs IGN] coefficient de rétrodiffusion
[Termes descripteurs IGN] cultures
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] évapotranspiration
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] Maroc
[Termes descripteurs IGN] polarisation
[Termes descripteurs IGN] surveillance agricole
[Termes descripteurs IGN] teneur en eau de la végétation
[Termes descripteurs IGN] zone semi-arideRésumé : (auteur) Radar data at C-band has shown great potential for the monitoring of soil and canopy hydric conditions of wheat crops. In this study, the C-band Sentinel-1 time series including the backscattering coefficients σ0 at VV and VH polarization, the polarization ratio (PR) and the interferometric coherence ρ are first analyzed with the support of experimental data gathered on three plots of irrigated winter wheat located in the Haouz plain in the center of Morocco covering five growing seasons. The results showed that ρ and PR are tightly related to the canopy development. ρ is also sensitive to soil preparation. By contrast, σ0 was found to be widely linked to changes in surface soil moisture (SSM) during the first growth stages when Leaf Area Index remains moderate ( Numéro de notice : A2020-337 Affiliation des auteurs : UGE-LaSTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2020.112050 date de publication en ligne : 24/08/2020 En ligne : https://doi.org/10.1016/j.rse.2020.112050 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96939
in Remote sensing of environment > Vol 251 (15 December 2020) . - n° 112050[article]L-band SAR for estimating aboveground biomass of rubber plantation in Java Island, Indonesia / Bambang H Trisasongko in Geocarto international, vol 35 n° 12 ([01/09/2020])
![]()
[article]
Titre : L-band SAR for estimating aboveground biomass of rubber plantation in Java Island, Indonesia Type de document : Article/Communication Auteurs : Bambang H Trisasongko, Auteur ; David J. Paull, Auteur Année de publication : 2020 Article en page(s) : pp 1327 - 1342 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] arbre hors forêt
[Termes descripteurs IGN] bande L
[Termes descripteurs IGN] biomasse aérienne
[Termes descripteurs IGN] carbone
[Termes descripteurs IGN] données allométriques
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] image ALOS-PALSAR
[Termes descripteurs IGN] Java (île de)Résumé : (auteur) This article discusses an experiment on the estimation of rubber tree biomass using L-band Synthetic Aperture Radar (SAR), to support recent efforts to include trees outside forest in global biomass and carbon accounting. We noted that date of acquisition is important, but certainly the selection of allometric equation serving as the reference data was paramount. Similarly, choosing a proper form of fully polarimetric data was instrumental, although this requires validation in different environmental settings. As expected, modern data mining approaches consistently delivered high accuracy. Extreme learning machine yielded the best estimate in terms of R2 (0.98) and RMSE (1.88 Mg/ha); nonetheless, it also delivered a slight negative estimation. In this case, we found that a variant of random forest produced an outcome without any negative estimation. This research suggests that estimated biomass or carbon information from rubber plantations would be an invaluable candidate for the improvement of global biomass data. Numéro de notice : A2020-480 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1573855 date de publication en ligne : 18/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1573855 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95630
in Geocarto international > vol 35 n° 12 [01/09/2020] . - pp 1327 - 1342[article]Polarimetric SAR calibration and residual error estimation when corner reflectors are unavailable / Lei Shi in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
![]()
[article]
Titre : Polarimetric SAR calibration and residual error estimation when corner reflectors are unavailable Type de document : Article/Communication Auteurs : Lei Shi, Auteur ; Pingxiang Li, Auteur ; Jie Yang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 4454 - 4471 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] bruit (théorie du signal)
[Termes descripteurs IGN] coin réflecteur
[Termes descripteurs IGN] dégradation du signal
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] étalonnage
[Termes descripteurs IGN] extraction automatique
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] interruption du signal
[Termes descripteurs IGN] polarimétrie radar
[Termes descripteurs IGN] polarisation croisée
[Termes descripteurs IGN] rétrodiffusion de BraggRésumé : (auteur) In this article, we propose a polarimetric calibration (PolCal) algorithm to estimate the system crosstalk, cross-polarization (x-pol), and co-polarization (co-pol) channel imbalance (CI) when ground corner reflectors (CRs) are unavailable. The current PolCal process requires at least one trihedral CR to determine the co-pol CI. However, the deployment of ground CRs is costly and may even be impossible in some areas. To calibrate a polarimetric image without CRs, our proposed method automatically extracts the volume-dominated and Bragg-like pixels as a reference to estimate the crosstalk, x-pol, and co-pol CI values. Then, a first-order polynomial model is exploited to fit the co-pol CI to further improve calibration accuracy. In the experimental section, we demonstrate the effectiveness of our proposed method with data from two of China’s newly developed very high-resolution systems. The experiments confirmed that the proposed workflow can be considered as a feasible calibration scheme when the ground deployment of CRs is impossible, and it is also an effective analysis tool for the assessment of calibrated products. Numéro de notice : A2020-286 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2964732 date de publication en ligne : 20/01/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2964732 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95109
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020) . - pp 4454 - 4471[article]Fusing adjacent-track InSAR datasets to densify the temporal resolution of time-series 3-D displacement estimation over mining areas with a prior deformation model and a generalized weighting least-squares method / Yuedong Wang in Journal of geodesy, vol 94 n° 5 (May 2020)
PermalinkIdentification of alpine glaciers in the central Himalayas using fully polarimetric L-Band SAR data / Guo-Hui Yao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)
PermalinkPolarization dependence of azimuth cutoff from quad-pol SAR images / Huimin Li in IEEE Transactions on geoscience and remote sensing, vol 57 n° 12 (December 2019)
PermalinkSoil and vegetation scattering contributions in L-Band and P-Band polarimetric SAR observations / S. Hamed Alemohammad in IEEE Transactions on geoscience and remote sensing, vol 57 n° 11 (November 2019)
PermalinkThe cause of the 2011 Hawthorne (Nevada) earthquake swarm constrained by seismic and InSAR methods / Xianjie Zha in Journal of geodesy, vol 93 n°6 (June 2019)
PermalinkUsing Sentinel-1A DInSAR interferometry and Landsat 8 data for monitoring water level changes in two lakes in Crete, Greece / D.D. Alexakis in Geocarto international, vol 34 n° 7 ([01/06/2019])
PermalinkDeveloping a subswath-based wind speed retrieval model for sentinel-1 VH-Polarized SAR data over the ocean surface / Kangyu Zhang in IEEE Transactions on geoscience and remote sensing, vol 57 n° 3 (March 2019)
PermalinkEvaluation of time-series SAR and optical images for the study of winter land-use / Julien Denize (2019)
PermalinkLong-term land deformation monitoring using quasi-persistent scatterer (Q-PS) technique observed by sentinel-1A : case study Kelok Sembilan / Pakhrur Razi in Advances in Remote Sensing, vol 7 n° 4 (December 2018)
PermalinkPolarization orientation angle and polarimetric SAR scattering characteristics of steep terrain / Jong-Sen Lee in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
PermalinkPotential of Sentinel-1 data for monitoring temperate mixed forest phenology / Pierre-Louis Frison in Remote sensing, vol 10 n° 12 (December 2018)
PermalinkSeparating the influence of vegetation changes in polarimetric differential SAR interferometry / Virginia Brancato in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
PermalinkUnmixing polarimetric radar images based on land cover type identified by higher resolution optical data before target decomposition: application to forest and bare soil / Sébastien Giordano in IEEE Transactions on geoscience and remote sensing, vol 56 n° 10 (October 2018)
PermalinkEstimation of winter wheat crop growth parameters using time series Sentinel-1A SAR data / P. Kumar in Geocarto international, vol 33 n° 9 (September 2018)
PermalinkComplex-valued convolutional neural network and its application in polarimetric SAR image classification / Zhimian Zhang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 12 (December 2017)
PermalinkIncidence angle dependence of first-year sea ice backscattering coefficient in Sentinel-1 SAR Imagery over the kara sea / Marko P. Mäkynen in IEEE Transactions on geoscience and remote sensing, vol 55 n° 11 (November 2017)
PermalinkAn information fusion approach for PALSAR data to retrieve soil moisture / Ankita Jain in Geocarto international, vol 32 n° 9 (September 2017)
PermalinkCritical analysis of model-based incoherent polarimetric decomposition methods and investigation of deorientation effect / Pooja Mishra in IEEE Transactions on geoscience and remote sensing, vol 55 n° 9 (September 2017)
PermalinkDistance measure based change detectors for polarimetric SAR imagery / Yonghong Zhang in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 9 (September 2016)
PermalinkThe impacts of building orientation on polarimetric orientation angle estimation and model-based decomposition for multilook polarimetric SAR data in urban areas / Hongzhong Li in IEEE Transactions on geoscience and remote sensing, vol 54 n° 9 (September 2016)
Permalink