Descripteur
Termes descripteurs IGN > technologies spatiales > mécanique spatiale > orbitographie
orbitographieSynonyme(s)détermination d'orbiteVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Determination of precise Galileo orbits using combined GNSS and SLR observations / Grzegorz Bury in GPS solutions, vol 25 n° 1 (January 2021)
![]()
[article]
Titre : Determination of precise Galileo orbits using combined GNSS and SLR observations Type de document : Article/Communication Auteurs : Grzegorz Bury, Auteur ; Krzysztof Sosnica, Auteur ; Radoslaw Zajdel, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 11 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes descripteurs IGN] données GNSS
[Termes descripteurs IGN] données TLS (télémétrie)
[Termes descripteurs IGN] Galileo
[Termes descripteurs IGN] International Terrestrial Reference Frame
[Termes descripteurs IGN] orbite précise
[Termes descripteurs IGN] orbitographie
[Termes descripteurs IGN] pondérationRésumé : (auteur) Galileo satellites are equipped with laser retroreflector arrays for satellite laser ranging (SLR). In this study, we develop a methodology for the GNSS-SLR combination at the normal equation level with three different weighting strategies and evaluate the impact of laser observations on the determined Galileo orbits. We provide the optimum weighting scheme for precise orbit determination employing the co-location onboard Galileo. The combined GNSS-SLR solution diminishes the semimajor axis formal error by up to 62%, as well as reduces the dependency between values of formal errors and the elevation of the Sun above the orbital plane—the β angle. In the combined solution, the standard deviation of the SLR residuals decreases from 36.1 to 29.6 mm for Galileo-IOV satellites and |β|> 60°, when compared to GNSS-only solutions. Moreover, the bias of the Length-of-Day parameter is 20% lower for the combined solution when compared to the microwave one. As a result, the combination of GNSS and SLR observations provides promising results for future co-locations onboard the Galileo satellites for the orbit determination, realization of the terrestrial reference frames, and deriving geodetic parameters. Numéro de notice : A2021-008 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-01045-3 date de publication en ligne : 31/10/2020 En ligne : https://doi.org/10.1007/s10291-020-01045-3 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96298
in GPS solutions > vol 25 n° 1 (January 2021) . - n° 11[article]Reference system origin and scale realization within the future GNSS constellation “Kepler” / Susanne Glaser in Journal of geodesy, vol 94 n° 12 (December 2020)
![]()
[article]
Titre : Reference system origin and scale realization within the future GNSS constellation “Kepler” Type de document : Article/Communication Auteurs : Susanne Glaser, Auteur ; Grzegorz Michalak, Auteur ; Benjamin Männel, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 117 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] centre de phase
[Termes descripteurs IGN] constellation Galileo
[Termes descripteurs IGN] constellation GNSS
[Termes descripteurs IGN] décorrélation
[Termes descripteurs IGN] géocentre
[Termes descripteurs IGN] International Terrestrial Reference Frame
[Termes descripteurs IGN] Kepler, Johannes
[Termes descripteurs IGN] orbite basse
[Termes descripteurs IGN] orbite terrestre
[Termes descripteurs IGN] orbitographieRésumé : (auteur) Currently, Global Navigation Satellite Systems (GNSS) do not contribute to the realization of origin and scale of combined global terrestrial reference frame (TRF) solutions due to present system design limitations. The future Galileo-like medium Earth orbit (MEO) constellation, called “Kepler”, proposed by the German Aerospace Center DLR, is characterized by a low Earth orbit (LEO) segment and the innovative key features of optical inter-satellite links (ISL) delivering highly precise range measurements and of optical frequency references enabling a perfect time synchronization within the complete constellation. In this study, the potential improvements of the Kepler constellation on the TRF origin and scale are assessed by simulations. The fully developed Kepler system allows significant improvements of the geocenter estimates (realized TRF origin in long-term). In particular, we find improvements by factors of 43 for the Z and of 8 for the X and Y component w. r. t. a contemporary MEO-only constellation. Furthermore, the Kepler constellation increases the reliability due to a complete de-correlation of the geocenter coordinates and the orbit parameters related to the solar radiation pressure modeling (SRP). However, biases in SRP modeling cause biased geocenter estimates and the ISL of Kepler can only partly compensate this effect. The realized scale enabling all Kepler features improves by 34% w. r. t. MEO-only. The dependency of the estimated satellite antenna phase center offsets (PCOs) upon the underlying TRF impedes a scale realization by GNSS. In order to realize the network scale with 1 mm accuracy, the PCOs have to be known within 2 cm for the MEO and 4 mm for the LEO satellites. Independently, the scale can be realized by estimating the MEO PCOs and by simultaneously fixing the LEO PCOs. This requires very accurate LEO PCOs; the simulations suggest them to be smaller than 1 mm in order to keep scale changes below 1 mm. Numéro de notice : A2020-736 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01441-0 date de publication en ligne : 19/11/2020 En ligne : https://doi.org/1https://doi.org/10.1007/s00190-020-01441-0 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96352
in Journal of geodesy > vol 94 n° 12 (December 2020) . - n° 117[article]Integrated processing of ground- and space-based GPS observations: improving GPS satellite orbits observed with sparse ground networks / Wen Huang in Journal of geodesy, vol 94 n° 10 (October 2020)
![]()
[article]
Titre : Integrated processing of ground- and space-based GPS observations: improving GPS satellite orbits observed with sparse ground networks Type de document : Article/Communication Auteurs : Wen Huang, Auteur ; Benjamin Männel, Auteur ; Pierre Sakic-Kieffer, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 13 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes descripteurs IGN] modèle d'orbite
[Termes descripteurs IGN] orbite basse
[Termes descripteurs IGN] orbite précise
[Termes descripteurs IGN] orbitographie
[Termes descripteurs IGN] orbitographie par GNSS
[Termes descripteurs IGN] récepteur GPS
[Termes descripteurs IGN] station GPSRésumé : (auteur) The precise orbit determination (POD) of Global Navigation Satellite System (GNSS) satellites and low Earth orbiters (LEOs) are usually performed independently. It is a potential way to improve the GNSS orbits by integrating LEOs onboard observations into the processing, especially for the developing GNSS, e.g., Galileo with a sparse sensor station network and Beidou with a regional distributed operating network. In recent years, few studies combined the processing of ground- and space-based GNSS observations. The integrated POD of GPS satellites and seven LEOs, including GRACE-A/B, OSTM/Jason-2, Jason-3 and, Swarm-A/B/C, is discussed in this study. GPS code and phase observations obtained by onboard GPS receivers of LEOs and ground-based receivers of the International GNSS Service (IGS) tracking network are used together in one least-squares adjustment. The POD solutions of the integrated processing with different subsets of LEOs and ground stations are analyzed in detail. The derived GPS satellite orbits are validated by comparing with the official IGS products and internal comparison based on the differences of overlapping orbits and satellite positions at the day-boundary epoch. The differences between the GPS satellite orbits derived based on a 26-station network and the official IGS products decrease from 37.5 to 23.9 mm (34% improvement) in 1D-mean RMS when adding seven LEOs. Both the number of the space-based observations and the LEO orbit geometry affect the GPS satellite orbits derived in the integrated processing. In this study, the latter one is proved to be more critical. By including three LEOs in three different orbital planes, the GPS satellite orbits improve more than from adding seven well-selected additional stations to the network. Experiments with a ten-station and regional network show an improvement of the GPS satellite orbits from about 25 cm to less than five centimeters in 1D-mean RMS after integrating the seven LEOs. Numéro de notice : A2020-630 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01424-1 date de publication en ligne : 10/10/2020 En ligne : https://doi.org/10.1007/s00190-020-01424-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96049
in Journal of geodesy > vol 94 n° 10 (October 2020) . - 13 p.[article]GRACE-FO precise orbit determination and gravity recovery / Z. Kang in Journal of geodesy, vol 94 n° 9 (September 2020)
![]()
[article]
Titre : GRACE-FO precise orbit determination and gravity recovery Type de document : Article/Communication Auteurs : Z. Kang, Auteur ; S. Bettadpur, Auteur ; P. Nagel, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 85 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes descripteurs IGN] bande K
[Termes descripteurs IGN] champ de pesanteur terrestre
[Termes descripteurs IGN] données GRACE
[Termes descripteurs IGN] double différence
[Termes descripteurs IGN] interféromètre au laser
[Termes descripteurs IGN] orbite précise
[Termes descripteurs IGN] orbitographieRésumé : (auteur) The gravity recovery and climate experiment follow-on (GRACE-FO) satellites, launched in May of 2018, are equipped with geodetic quality GPS receivers for precise orbit determination (POD) and gravity recovery. The primary objective of the GRACE-FO mission is to map the time-variable and mean gravity field of the Earth. To achieve this goal, both GRACE-FO satellites are additionally equipped with a K-band ranging (KBR) system, accelerometers and star trackers. Data processing strategies, data weighting approaches and impacts of observation types and rates are investigated in order to determine the most efficient approach for processing GRACE-FO multi-type data for precise orbit determination and gravity recovery. Two GPS observation types, un-differenced (UD) and double-differenced (DD) observations in general can be used for GPS-based POD and gravity recovery. The GRACE-FO KBR observations are mainly used for gravity recovery, but they can be also used for POD to improve the relative orbit accuracy. The main purpose of this paper is to study the impacts of the DD, UD and KBR observations on GRACE-FO POD and gravity recovery. The precise orbit accuracy is assessed using several tests, which include analysis of orbital fits, satellite laser ranging residuals, KBR range residuals and orbit comparisons. The gravity recovery is validated by comparing different gravity solutions through coefficient-wise comparison, degree difference variances and water height variations over the whole Earth and selected area and river basins. Numéro de notice : A2020-542 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01414-3 date de publication en ligne : 16/08/2020 En ligne : https://doi.org/10.1007/s00190-020-01414-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95744
in Journal of geodesy > vol 94 n° 9 (September 2020) . - n° 85[article]Orbit and clock analysis of BDS-3 satellites using inter-satellite link observations / Xin Xie in Journal of geodesy, vol 94 n° 7 (July 2020)
![]()
[article]
Titre : Orbit and clock analysis of BDS-3 satellites using inter-satellite link observations Type de document : Article/Communication Auteurs : Xin Xie, Auteur ; Tao Geng, Auteur ; Qile Zhao, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 64 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] constellation BeiDou
[Termes descripteurs IGN] horloge du satellite
[Termes descripteurs IGN] orbite géostationnaire
[Termes descripteurs IGN] orbite terrestre
[Termes descripteurs IGN] orbitographie
[Termes descripteurs IGN] variance d'AllanRésumé : (auteur) China is currently focusing on the establishment of its BDS-3 system, and a BDS-3 constellation with 18 satellites in medium Earth orbit (MEO) and one satellite in geostationary Earth orbit (GEO) has been able to provide preliminary global services since the end of 2018. These BDS-3 satellites feature the inter-satellite link (ISL) and new high-quality onboard clocks. In this study, we present the analysis of BDS-3 orbits and clocks determined by Ka-band ISL measurements from 18 MEO satellites and one GEO satellite. The ISL data of 43 days from 1 January to 12 February 2019 are used. The BDS-3 ISL measurement is described by a dual one-way ranging model. After converting bidirectional observations to the same epoch, Ka-band clock-free and geometry-free observables are obtained by the addition and subtraction of dual one-way observations, respectively. One anchor station with Ka-band bidirectional observations is introduced into the orbit determination to provide the orientation constraints. Using Ka-band clock-free observables, BDS-3 satellite orbits are determined. The ISL hardware delays are estimated together with orbits, and the resulting hardware delay estimates are quite stable with STD of about 0.03 ns. The Ka-band orbits are evaluated by orbit overlap differences, comparison with L-band precise orbits, and satellite laser ranging validation. The results indicate that the radial orbit errors are on the 2–4 cm level for MEO satellites and 8–10 cm for the GEO satellite. In addition, we investigate the ground anchoring capability by adding one anchor station and reducing the amount of data of the anchor station. Using Ka-band geometry-free observables, BDS-3 satellite clocks are estimated and the RMS of post-fit ISL residuals is about 5 cm. The Ka-band clock offsets are analyzed and compared with L-band precise clocks. Independent of orbit errors, the Allan deviation of Ka-band clocks for averaging interval longer than 5000 s is superior to that of L-band clocks. Furthermore, a pronounced bump, which appears in the Allan deviation of L-band clocks, almost vanishes in Ka-band clocks. Finally, the periodic variations are detected for L-band and Ka-band clocks. Numéro de notice : A2020-534 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01394-4 date de publication en ligne : 08/07/2020 En ligne : https://doi.org/10.1007/s00190-020-01394-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95724
in Journal of geodesy > vol 94 n° 7 (July 2020) . - n° 64[article]Geodetic VLBI for precise orbit determination of Earth satellites: a simulation study / Grzegorz Klopotek in Journal of geodesy, vol 94 n° 6 (June 2020)
PermalinkImpact of thermospheric mass density on the orbit prediction of LEO satellites / Changyong He in Space weather, vol 18 n° 1 (January 2020)
PermalinkGalileo and QZSS precise orbit and clock determination using new satellite metadata / Xingxing Li in Journal of geodesy, vol 93 n° 8 (August 2019)
PermalinkProcessing of GNSS constellations and ground station networks using the raw observation approach / Sebastian Strasser in Journal of geodesy, vol 93 n°7 (July 2019)
PermalinkDPOD2014 : A new DORIS extension of ITRF2014 for precise orbit determination / Guilhem Moreaux in Advances in space research, vol 63 n° 1 (1 January 2019)
PermalinkImproving multi-GNSS ultra-rapid orbit determination for real-time precise point positioning / Xingxing Li in Journal of geodesy, vol 93 n° 1 (January 2019)
PermalinkLEO enhanced Global Navigation Satellite System (LeGNSS) for real-time precise positioning services / Bofeng Li in Advances in space research, vol 63 n° 1 (1 January 2019)
PermalinkPrecise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations / Olivier Montenbruck in Journal of geodesy, vol 92 n° 7 (July 2018)
PermalinkEstimation of antenna phase center offset for BDS IGSO and MEO satellites / Guanwen Huang in GPS solutions, vol 22 n° 2 (April 2018)
PermalinkBenefits of satellite clock modeling in BDS and Galileo orbit determination / Yun Qing in Advances in space research, vol 60 n° 12 (15 December 2017)
Permalink