Descripteur
Termes descripteurs IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géophysique interne > géodésie > géodésie spatiale > télémétrie laser sur satellite
télémétrie laser sur satelliteSynonyme(s)TLS SLRVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Determination of precise Galileo orbits using combined GNSS and SLR observations / Grzegorz Bury in GPS solutions, vol 25 n° 1 (January 2021)
![]()
[article]
Titre : Determination of precise Galileo orbits using combined GNSS and SLR observations Type de document : Article/Communication Auteurs : Grzegorz Bury, Auteur ; Krzysztof Sosnica, Auteur ; Radoslaw Zajdel, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 11 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes descripteurs IGN] données GNSS
[Termes descripteurs IGN] données TLS (télémétrie)
[Termes descripteurs IGN] Galileo
[Termes descripteurs IGN] International Terrestrial Reference Frame
[Termes descripteurs IGN] orbite précise
[Termes descripteurs IGN] orbitographie
[Termes descripteurs IGN] pondérationRésumé : (auteur) Galileo satellites are equipped with laser retroreflector arrays for satellite laser ranging (SLR). In this study, we develop a methodology for the GNSS-SLR combination at the normal equation level with three different weighting strategies and evaluate the impact of laser observations on the determined Galileo orbits. We provide the optimum weighting scheme for precise orbit determination employing the co-location onboard Galileo. The combined GNSS-SLR solution diminishes the semimajor axis formal error by up to 62%, as well as reduces the dependency between values of formal errors and the elevation of the Sun above the orbital plane—the β angle. In the combined solution, the standard deviation of the SLR residuals decreases from 36.1 to 29.6 mm for Galileo-IOV satellites and |β|> 60°, when compared to GNSS-only solutions. Moreover, the bias of the Length-of-Day parameter is 20% lower for the combined solution when compared to the microwave one. As a result, the combination of GNSS and SLR observations provides promising results for future co-locations onboard the Galileo satellites for the orbit determination, realization of the terrestrial reference frames, and deriving geodetic parameters. Numéro de notice : A2021-008 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-01045-3 date de publication en ligne : 31/10/2020 En ligne : https://doi.org/10.1007/s10291-020-01045-3 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96298
in GPS solutions > vol 25 n° 1 (January 2021) . - n° 11[article]A hybrid approach for recovering high-resolution temporal gravity fields from satellite laser ranging / Anno Löcher in Journal of geodesy, vol 95 n° 1 (January 2021)
![]()
[article]
Titre : A hybrid approach for recovering high-resolution temporal gravity fields from satellite laser ranging Type de document : Article/Communication Auteurs : Anno Löcher, Auteur ; Jürgen Kusche, Auteur Année de publication : 2021 Article en page(s) : n° 6 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes descripteurs IGN] champ de pesanteur terrestre
[Termes descripteurs IGN] changement temporel
[Termes descripteurs IGN] données GRACE
[Termes descripteurs IGN] données TLS (télémétrie)
[Termes descripteurs IGN] facteur d'échelle
[Termes descripteurs IGN] fonction orthogonale
[Termes descripteurs IGN] harmonique sphérique
[Termes descripteurs IGN] modélisation
[Termes descripteurs IGN] série temporelleRésumé : (auteur) A new approach to recover time-variable gravity fields from satellite laser ranging (SLR) is presented. It takes up the concept of lumped coefficients by representing the temporal changes of the Earth’s gravity field by spatial patterns via combinations of spherical harmonics. These patterns are derived from the GRACE mission by decomposing the series of monthly gravity field solutions into empirical orthogonal functions (EOFs). The basic idea of the approach is then to use the leading EOFs as base functions in the gravity field modelling and to adjust the respective scaling factors straightforward within the dynamic orbit computation; only for the lowest degrees, the spherical harmonic coefficients are estimated separately. As a result, the estimated gravity fields have formally the same spatial resolution as GRACE. It is shown that, within the GRACE time frame, both the secular and the seasonal signals in the GRACE time series are reproduced with high accuracy. In the period prior to GRACE, the SLR solutions are in good agreement with other techniques and models and confirm, for instance, that the Greenland ice sheet was stable until the late 1990s. Further validation is done with the first monthly fields from GRACE Follow-On, showing a similar agreement as with GRACE itself. Significant differences to the reference data only emerge occasionally when zooming into smaller river basins with strong interannual mass variations. In such cases, the approach reaches its limits which are set by the low spectral sensitivity of the SLR satellites and the strong constraints exerted by the EOFs. The benefit achieved by the enhanced spatial resolution has to be seen, therefore, primarily in the proper capturing of the mass signal in medium or large areas rather than in the opportunity to focus on isolated spatial details. Numéro de notice : A2021-026 Affiliation des auteurs : non IGN Thématique : MATHEMATIQUE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01460-x date de publication en ligne : 23/12/2020 En ligne : https://doi.org/10.1007/s00190-020-01460-x Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96710
in Journal of geodesy > vol 95 n° 1 (January 2021) . - n° 6[article]Self-consistent determination of the Earth’s GM, geocenter motion and figure axis orientation / Alexandre Couhert in Journal of geodesy, vol 94 n° 12 (December 2020)
![]()
[article]
Titre : Self-consistent determination of the Earth’s GM, geocenter motion and figure axis orientation Type de document : Article/Communication Auteurs : Alexandre Couhert, Auteur ; Christian Bizouard, Auteur ; F. Mercier, Auteur ; Kristel Chanard , Auteur ; Marianne Greff-Lefftz, Auteur ; Pierre Exertier, Auteur
Année de publication : 2020 Projets : 1-Pas de projet / Article en page(s) : n° 113 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes descripteurs IGN] données Ajisai
[Termes descripteurs IGN] données Jason
[Termes descripteurs IGN] données Lageos
[Termes descripteurs IGN] données Lares
[Termes descripteurs IGN] données Starlette
[Termes descripteurs IGN] données Stella
[Termes descripteurs IGN] données TLS (télémétrie)
[Termes descripteurs IGN] erreur de modèle
[Termes descripteurs IGN] harmonique sphérique
[Termes descripteurs IGN] incertitude géométrique
[Termes descripteurs IGN] mouvement du géocentre
[Termes descripteurs IGN] surface de la merRésumé : (auteur) The very low-degree Earth’s gravity coefficients, associated with the largest-scale mass redistribution in the Earth’s fluid envelope (atmosphere, oceans and continental hydrology), are the most poorly known. In particular, the first three degree geopotential terms are important, as they relate to intrinsic Earth’s mass references: gravitational coefficient (GM) of the Earth (degree 0), geocenter motion (degree 1), Earth’s figure axis orientation (degree 2). This paper presents a self-consistent determination of these three properties of the Earth. The main objective is to deal with the remaining sources of altimetry satellite orbit uncertainties affecting the fundamental record of sea surface height measurements. The analysis identifies the modeling errors, which should be mitigated when estimating the geocenter coordinates from Satellite Laser Ranging (SLR) observations. The long-term behavior of the degree-0 and -2 spherical harmonics is also observed over the 34-year period 1984–2017 from the long-time history of satellite laser tracking to geodetic spherical satellites. From the analysis of the evolution of these two coefficients, constraints regarding the Earth’s rheology and uncertainties in the value of GM could be inferred. Overall, the influence of the orbit characteristics, SLR station ranging/position biases and satellite signature effects, measurement modeling errors (tropospheric corrections, non-tidal deformations) are also discussed. Numéro de notice : A2020-330 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01450-z date de publication en ligne : 18/11/2020 En ligne : https://doi.org/10.1007/s00190-020-01450-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96858
in Journal of geodesy > vol 94 n° 12 (December 2020) . - n° 113[article]Evolution of orbit and clock quality for real-time multi-GNSS solutions / Kamil Kazmierski in GPS solutions, Vol 24 n° 4 (October 2020)
![]()
[article]
Titre : Evolution of orbit and clock quality for real-time multi-GNSS solutions Type de document : Article/Communication Auteurs : Kamil Kazmierski, Auteur ; Radoslaw Zajdel, Auteur ; Krzysztof Sosnica, Auteur Année de publication : 2020 Article en page(s) : 12 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] correction
[Termes descripteurs IGN] erreur systématique
[Termes descripteurs IGN] horloge atomique
[Termes descripteurs IGN] orbitographie par GNSS
[Termes descripteurs IGN] positionnement par GNSS
[Termes descripteurs IGN] positionnement ponctuel précis
[Termes descripteurs IGN] précision du positionnement
[Termes descripteurs IGN] synchronisation
[Termes descripteurs IGN] télémétrie laser sur satellite
[Termes descripteurs IGN] temps réelRésumé : (auteur) High-quality satellite orbits and clocks are necessary for multi-GNSS precise point positioning and timing. In undifferenced GNSS solutions, the quality of orbit and clock products significantly influences the resulting position accuracy; therefore, for precise positioning in real time, the corrections for orbits and clocks are generated and distributed to users. In this research, we assess the quality and the availability of real-time CNES orbits and clocks for GPS, GLONASS, Galileo, and BeiDou-2 separated by satellite blocks and types, as well as the product quality changes over time. We calculate the signal-in-space ranging error (SISRE) as the main orbit and clock quality indicator. Moreover, we employ independent orbit validation based on satellite laser ranging. We found that the most accurate orbits are currently available for GPS. However, Galileo utmost stable atomic clocks compensate for systematic errors in Galileo orbits. As a result, the SISRE for Galileo is lower than that for GPS, equaling 1.6 and 2.3 cm for Galileo and GPS, respectively. The GLONASS satellites, despite the high quality of their orbits, are characterized by poor quality of clocks, and together with BeiDou-2 in medium and geosynchronous inclined orbits, are characterized by SISRE of 4–6 cm. BeiDou-2 in geostationary orbits is characterized by large orbital errors and the lowest availability of real-time orbit and clock corrections due to a large number of satellite maneuvers. The quality of GNSS orbit and clock corrections changes over time and depends on satellite type, block, orbit characteristics, onboard atomic clock, and the sun elevation above the orbital plane. Numéro de notice : A2020-520 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-01026-6 date de publication en ligne : 28/08/2020 En ligne : https://doi.org/10.1007/s10291-020-01026-6 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95687
in GPS solutions > Vol 24 n° 4 (October 2020) . - 12 p.[article]GipsyX/RTGx, a new tool set for space geodetic operations and research / Willy I. Bertiger in Advances in space research, vol 66 n° 3 (1 August 2020)
![]()
[article]
Titre : GipsyX/RTGx, a new tool set for space geodetic operations and research Type de document : Article/Communication Auteurs : Willy I. Bertiger, Auteur ; Yoaz E. Bar-Sever, Auteur ; A. Dorsey, Auteur ; Bruce J. Haines, Auteur ; N.R. Harvey, Auteur ; Dan Hemberger, Auteur ; Michael B. Heflin, Auteur ; Wenwen Lu, Auteur ; Mark Miller, Auteur ; Angelyn Moore, Auteur ; Dave Murphy, Auteur ; Paul Ries, Auteur ; L.J. Romans, Auteur ; Aurore E. Sibois, Auteur ; Ant Sibthorpe, Auteur ; Bela Szilagyi, Auteur ; Michele Vallisneri, Auteur ; Pascal Willis , Auteur
Année de publication : 2020 Projets : 3-projet - voir note / Article en page(s) : pp 469 - 489 Note générale : bibliographie
The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] données DORIS
[Termes descripteurs IGN] données GNSS
[Termes descripteurs IGN] données ITGB
[Termes descripteurs IGN] données TLS (télémétrie)
[Termes descripteurs IGN] filtre de Kalman
[Termes descripteurs IGN] horloge atomique
[Termes descripteurs IGN] horloge du satellite
[Termes descripteurs IGN] logiciel d'orbitographie
[Termes descripteurs IGN] positionnement ponctuel précis
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] temps réel
[Termes descripteurs IGN] traitement de données GNSSRésumé : (auteur) GipsyX/RTGx is the Jet Propulsion Laboratory’s (JPL) next generation software package for positioning, navigation, timing, and Earth science using measurements from three geodetic techniques: Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS); with Very Long Baseline Interferometry (VLBI) under development. The software facilitates combined estimation of geodetic and geophysical parameters using a Kalman filter approach on real or simulated data in both post-processing and in real-time. The estimated parameters include station coordinates and velocities, satellite orbits and clocks, Earth orientation, ionospheric and tropospheric delays. The software is also capable of full realization of a dynamic terrestrial reference through analysis and combination of time series of ground station coordinates.
Applying lessons learned from its predecessors, GIPSY-OASIS and Real Time GIPSY (RTG), GipsyX/RTGx was re-designed from the ground up to offer improved precision, accuracy, usability, and operational flexibility. We present some key aspects of its new architecture, and describe some of its major applications, including Real-time orbit determination and ephemeris predictions in the U.S. Air Force Next Generation GPS Operational Control Segment (OCX), as well as in JPL’s Global Differential GPS (GDGPS) System, supporting User Range Error (URE) of
5 cm RMS; precision post-processing GNSS orbit determination, including JPL’s contributions to the International GNSS Service (IGS) with URE in the 2 cm RMS range; Precise point positioning (PPP) with ambiguity resolution, both statically and kinematically, for geodetic applications with 2 mm horizontal, and 6.5 mm vertical repeatability for static positioning; Operational orbit and clock determination for Low Earth Orbiting (LEO) satellites, such as NASA’s Gravity Recovery and Climate Experiment (GRACE) mission with GRACE relative clock alignment at the 20 ps level; calibration of radio occultation data from LEO satellites for weather forecasting and climate studies; Satellite Laser Ranging (SLR) to GNSS and LEO satellites, DORIS-based and multi-technique orbit determination for LEO; production of terrestrial reference frames and Earth rotation parameters in support of JPL’s contribution to the International Terrestrial Reference Frame (ITRF).Numéro de notice : A2020-575 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : INFORMATIQUE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.asr.2020.04.015 date de publication en ligne : 22/04/2020 En ligne : https://doi.org/10.1016/j.asr.2020.04.015 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96369
in Advances in space research > vol 66 n° 3 (1 August 2020) . - pp 469 - 489[article]Geodetic VLBI for precise orbit determination of Earth satellites: a simulation study / Grzegorz Klopotek in Journal of geodesy, vol 94 n° 6 (June 2020)
PermalinkEstimation of soil surface water contents for intertidal mudflats using a near-infrared long-range terrestrial laser scanner / Kai Tan in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
PermalinkValidation and verification procedures for defining legal 3D boundaries using terrestrial laser scanners / Sam Rondeel in Survey review, Vol 52 n°370 (January 2020)
PermalinkImpact of network constraining on the terrestrial reference frame realization based on SLR observations to LAGEOS / Radoslaw Zajdel in Journal of geodesy, vol 93 n°11 (November 2019)
PermalinkLunar Laser Ranging: a tool for general relativity, lunar geophysics and Earth science / Jurgen Müller in Journal of geodesy, vol 93 n°11 (November 2019)
PermalinkSystematic errors in SLR data and their impact on the ILRS products / Vincenza Luceri in Journal of geodesy, vol 93 n°11 (November 2019)
PermalinkAutomated fusion of forest airborne and terrestrial point clouds through canopy density analysis / Wenxia Dai in ISPRS Journal of photogrammetry and remote sensing, vol 156 (October 2019)
PermalinkTroposphere delay modeling with horizontal gradients for satellite laser ranging / M. Drożdżewski in Journal of geodesy, vol 93 n°10 (October 2019)
PermalinkPermalinkFuture global SLR network evolution and its impact on the terrestrial reference frame / Alexander Kehm in Journal of geodesy, vol 92 n° 6 (June 2018)
Permalink