Descripteur
Termes descripteurs IGN > sciences naturelles > physique > traitement d'image > échantillonnage d'image
échantillonnage d'image |



Etendre la recherche sur niveau(x) vers le bas
Deep traffic light detection by overlaying synthetic context on arbitrary natural images / Jean Pablo Vieira de Mello in Computers and graphics, vol 94 n° 1 (February 2021)
![]()
[article]
Titre : Deep traffic light detection by overlaying synthetic context on arbitrary natural images Type de document : Article/Communication Auteurs : Jean Pablo Vieira de Mello, Auteur ; Lucas Tabelini, Auteur ; Rodrigo F. Berriel, Auteur Année de publication : 2021 Article en page(s) : pp 76 - 86 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] échantillonnage d'image
[Termes descripteurs IGN] feu de circulation
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] navigation autonome
[Termes descripteurs IGN] signalisation routière
[Termes descripteurs IGN] trafic routierRésumé : (auteur) Deep neural networks come as an effective solution to many problems associated with autonomous driving. By providing real image samples with traffic context to the network, the model learns to detect and classify elements of interest, such as pedestrians, traffic signs, and traffic lights. However, acquiring and annotating real data can be extremely costly in terms of time and effort. In this context, we propose a method to generate artificial traffic-related training data for deep traffic light detectors. This data is generated using basic non-realistic computer graphics to blend fake traffic scenes on top of arbitrary image backgrounds that are not related to the traffic domain. Thus, a large amount of training data can be generated without annotation efforts. Furthermore, it also tackles the intrinsic data imbalance problem in traffic light datasets, caused mainly by the low amount of samples of the yellow state. Experiments show that it is possible to achieve results comparable to those obtained with real training data from the problem domain, yielding an average mAP and an average F1-score which are each nearly 4 p.p. higher than the respective metrics obtained with a real-world reference model. Numéro de notice : A2021-151 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cag.2020.09.012 date de publication en ligne : 09/10/2020 En ligne : https://doi.org/10.1016/j.cag.2020.09.012 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97027
in Computers and graphics > vol 94 n° 1 (February 2021) . - pp 76 - 86[article]Heuristic sample learning for complex urban scenes: Application to urban functional-zone mapping with VHR images and POI data / Xiuyuan Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
![]()
[article]
Titre : Heuristic sample learning for complex urban scenes: Application to urban functional-zone mapping with VHR images and POI data Type de document : Article/Communication Auteurs : Xiuyuan Zhang, Auteur ; Shihong Du, Auteur ; Zhijia Zheng, Auteur Année de publication : 2020 Article en page(s) : pp 1 - 12 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] apprentissage dirigé
[Termes descripteurs IGN] apprentissage semi-dirigé
[Termes descripteurs IGN] cartographie urbaine
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] échantillonnage d'image
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] méthode heuristique
[Termes descripteurs IGN] point d'intérêt
[Termes descripteurs IGN] scène urbaineRésumé : (Auteur) Urban functional zones are basic units of urban planning and resource allocation, and contribute to a wide range of urban studies and investigations. Existing studies on functional-zone mapping with very-high-resolution (VHR) satellite images focused much on feature representations and classification techniques, but ignored zone sampling which however was fundamental to automatic zone classifications. Functional-zone sampling is much complicated and can hardly be resolved by classical sampling methods, as functional zones are complex urban scenes which consist of heterogeneous land covers and have highly abstract categories. To resolve the issue, this study presents a novel sampling paradigm, i.e., heuristic sample learning (HSL). It first proposes a sparse topic model to select representative functional zones, then uses deep forest to select confusing zones, and finally embraces Chinese restaurant process to label these selected zones. The presented method collects both representative and confusing zone samples and identifies their categories accurately, which makes the functional-zone classification process robust and the classification results accurate. Experiments conducted in Beijing indicate that HSL is effective and efficient for functional-zone sampling and classifications. Compared to traditional manual sampling, HSL reduces the time cost by 55% and improves the classification accuracy by 11.3% on average; furthermore, HSL can reduce the variation in sampling and classification results caused by different proficiency of operators. Accordingly, HSL significantly contributes to functional-zone mapping and plays an important role in urban studies. Numéro de notice : A2020-061 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.01.005 date de publication en ligne : 13/01/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.01.005 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94577
in ISPRS Journal of photogrammetry and remote sensing > vol 161 (March 2020) . - pp 1 - 12[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020031 SL Revue Centre de documentation Revues en salle Disponible 081-2020033 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Saliency-guided deep neural networks for SAR image change detection / Jie Geng in IEEE Transactions on geoscience and remote sensing, Vol 57 n° 10 (October 2019)
![]()
[article]
Titre : Saliency-guided deep neural networks for SAR image change detection Type de document : Article/Communication Auteurs : Jie Geng, Auteur ; Xiaorui Ma, Auteur ; Xiaojun Zhou, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 7365 - 7377 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] classification floue
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] classification par réseau neuronal
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] échantillonnage d'image
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] filtre de déchatoiement
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] logique floue
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] saillance
[Termes descripteurs IGN] télédétection en hyperfréquenceMots-clés libres : hierarchical fuzzy C-means clustering (HFCM) Résumé : (auteur) Change detection is an important task to identify land-cover changes between the acquisitions at different times. For synthetic aperture radar (SAR) images, inherent speckle noise of the images can lead to false changed points, which affects the change detection performance. Besides, the supervised classifier in change detection framework requires numerous training samples, which are generally obtained by manual labeling. In this paper, a novel unsupervised method named saliency-guided deep neural networks (SGDNNs) is proposed for SAR image change detection. In the proposed method, to weaken the influence of speckle noise, a salient region that probably belongs to the changed object is extracted from the difference image. To obtain pseudotraining samples automatically, hierarchical fuzzy C-means (HFCM) clustering is developed to select samples with higher probabilities to be changed and unchanged. Moreover, to enhance the discrimination of sample features, DNNs based on the nonnegative- and Fisher-constrained autoencoder are applied for final detection. Experimental results on five real SAR data sets demonstrate the effectiveness of the proposed approach. Numéro de notice : A2019-536 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2913095 date de publication en ligne : 19/05/2019 En ligne : http://doi.org/10.1109/TGRS.2019.2913095 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94154
in IEEE Transactions on geoscience and remote sensing > Vol 57 n° 10 (October 2019) . - pp 7365 - 7377[article]PPD: Pyramid Patch Descriptor via convolutional neural network / Jie Wan in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 9 (September 2019)
![]()
[article]
Titre : PPD: Pyramid Patch Descriptor via convolutional neural network Type de document : Article/Communication Auteurs : Jie Wan, Auteur ; Alper Yilmaz, Auteur ; Lei Yan, Auteur Année de publication : 2019 Article en page(s) : pp 673 - 686 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] appariement d'images
[Termes descripteurs IGN] benchmark spatial
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] données localisées de référence
[Termes descripteurs IGN] échantillonnage d'image
[Termes descripteurs IGN] état de l'art
[Termes descripteurs IGN] extraction de données
[Termes descripteurs IGN] image aérienne
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] jeu de données localiséesRésumé : (Auteur) Local features play an important role in remote sensing image matching, and handcrafted features have been excessively used in this area for a long time. This article proposes a pyramid convolutional neural triplet network that extracts a 128-dimensional deep descriptor that significantly improves the matching performance. The proposed approach first extracts deep descriptors of the anchor patches and corresponding positive patches in a batch using the proposed pyramid convolutional neural network. Following this step, the approaches chooses the closest negative patch for each anchor patch and corresponding positive patch pair to form the triplet sample based on the descriptor distances among all other image patches in the batch. These triplets are used to optimize the parameters of the network using a new loss function. We evaluated the proposed deep descriptors on two benchmark data sets (Brown and HPatches) as well as real image data sets. The results reveal that the proposed descriptor achieves the state-of-the-art performance on the Brown data set and a comparatively very high performance on the HPatches data set. The proposed approach finds more correct matches than the classical handcrafted feature descriptors on aerial image pairs and is observed to be robust to variations in the viewpoint and illumination. Numéro de notice : A2019-416 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.9.673 date de publication en ligne : 01/09/2019 En ligne : https://doi.org/10.14358/PERS.85.9.673 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93543
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 9 (September 2019) . - pp 673 - 686[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019091 SL Revue Centre de documentation Revues en salle Disponible Comprehensive evaluation of soil moisture retrieval models under different crop cover types using C-band synthetic aperture radar data / P. Kumar in Geocarto international, vol 34 n° 9 ([15/06/2019])
![]()
[article]
Titre : Comprehensive evaluation of soil moisture retrieval models under different crop cover types using C-band synthetic aperture radar data Type de document : Article/Communication Auteurs : P. Kumar, Auteur ; A. Choudhary, Auteur ; D. K. Gupta, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 1022-1041 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] bande C
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] couvert végétal
[Termes descripteurs IGN] échantillonnage d'image
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Radarsat
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] modèle de régression
[Termes descripteurs IGN] polarisation
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] Uttar Pradesh (Inde ; état)Résumé : (auteur) In the present study, random forest regression (RFR), support vector regression (SVR) and artificial neural network regression (ANNR) models were evaluated for the retrieval of soil moisture covered by winter wheat, barley and corn crops. SVR with radial basis function kernel was provided the highest adj. R2 (0.95) value for soil moisture retrieval covered by the wheat crop at VV polarization. However, RFR provided the adj. R2 (0.94) value for soil moisture retrieval covered by barley crop at VV polarization using Sentinel-1A satellite data. The adj. R2 (0.94) values were found for the soil moisture covered by corn crop at VV polarization using RFR, SVR linear and radial basis function kernels. The least performance was reported using ANNR model for almost all the crops under investigation. The soil moisture retrieval outcomes were found better at VV polarization in comparison to VH polarization using three different models. Numéro de notice : A2019-517 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1464601 date de publication en ligne : 03/05/2018 En ligne : https://doi.org/10.1080/10106049.2018.1464601 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93876
in Geocarto international > vol 34 n° 9 [15/06/2019] . - pp 1022-1041[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2019091 SL Revue Centre de documentation Généralités Disponible A deep learning approach to DTM extraction from imagery using rule-based training labels / Caroline M. Gevaert in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
PermalinkDigital aerial photogrammetry for assessing cumulative spruce budworm defoliation and enhancing forest inventories at a landscape-level / Tristan R.H. Goodbody in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
PermalinkCombined calibration method based on rational function model for the Chinese GF-1 wide-field-of-view imagery / Taoyang Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 4 (April 2016)
PermalinkSampling piecewise convex unmixing and endmember extraction / Alina Zare in IEEE Transactions on geoscience and remote sensing, vol 51 n° 3 Tome 2 (March 2013)
PermalinkA framework for supervised image classification with incomplete training samples / Q. Guo in Photogrammetric Engineering & Remote Sensing, PERS, vol 78 n° 6 (June 2012)
PermalinkPersistent scatterer interferometry : potential, limits and initial C- and X-band comparison / M. Crosetto in Photogrammetric Engineering & Remote Sensing, PERS, vol 76 n° 9 (September 2010)
PermalinkQuantifiying the building stock optical high-resolution satellite imagery for assessing disaster risk / D. Ehrlich in Geocarto international, vol 25 n° 4 (July 2010)
PermalinkSampling approaches for one-pass land-use/land-cover change mapping / Z. Huang in International Journal of Remote Sensing IJRS, vol 31 n° 6 (March 2010)
PermalinkObservations of urban and suburban environments with global satellite scatterometer data / Son V. Nghiem in ISPRS Journal of photogrammetry and remote sensing, vol 64 n° 4 (July - August 2009)
PermalinkThe influence of thematic and spatial resolution on maps of a coral reef ecosystem / M. Kendall in Marine geodesy, vol 31 n° 2 (June - September 2008)
Permalink