Descripteur
Termes IGN > sciences humaines et sociales > économie > macroéconomie
macroéconomieVoir aussi |
Documents disponibles dans cette catégorie (1675)


Etendre la recherche sur niveau(x) vers le bas
Polyline simplification based on the artificial neural network with constraints of generalization knowledge / Jiawei Du in Cartography and Geographic Information Science, Vol 49 n° 4 (July 2022)
![]()
[article]
Titre : Polyline simplification based on the artificial neural network with constraints of generalization knowledge Type de document : Article/Communication Auteurs : Jiawei Du, Auteur ; Jichong Yin, Auteur ; Chengyi Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 313 - 337 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] descripteur
[Termes IGN] données maillées
[Termes IGN] données vectorielles
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] polyligne
[Termes IGN] programmation par contraintes
[Termes IGN] réseau neuronal artificiel
[Termes IGN] simplification de contour
[Vedettes matières IGN] GénéralisationRésumé : (auteur) The present paper presents techniques for polyline simplification based on an artificial neural network within the constraints of generalization knowledge. The proposed method measures polyline shape characteristics that influence polyline simplification using abstracted descriptors and then introduces these descriptors into the artificial neural network as input properties. In total, 18 descriptors categorized into three types are presented in detail. In a second approach, map simplification principles are abstracted as controllers, imposed after the output layer of the trained artificial neural network to make the polyline simplification comply with these principles. This study worked with three controllers – a basic controller and two knowledge-based controllers. These descriptors and controllers abstracted from generalization knowledge were tested in experiments to determine their efficacy in polyline simplification based on the artificial neural network. The experimental results show that the utilization of abstracted descriptors and controllers can constrain the artificial neural network-based polyline simplification according to polyline shape characteristics and simplification principles. Numéro de notice : A2022-479 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : https://doi.org/10.1080/15230406.2021.2013944 Date de publication en ligne : 17/01/2022 En ligne : https://doi.org/10.1080/15230406.2021.2013944 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100885
in Cartography and Geographic Information Science > Vol 49 n° 4 (July 2022) . - pp 313 - 337[article]
[article]
Titre : Dater les documents cartographiques Type de document : Article/Communication Auteurs : Jean-Luc Arnaud, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 18 Note générale : bibliographie Langues : Français (fre) Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie ancienne
[Termes IGN] cartographie militaire
[Termes IGN] datation
[Termes IGN] dépôt de la guerre
[Termes IGN] document cartographique
[Termes IGN] échelle cartographique
[Termes IGN] édition cartographique
[Termes IGN] histoire
[Termes IGN] précision
[Termes IGN] Service Géographique de l'Armée
[Termes IGN] utilisateurRésumé : (auteur) Cet article examine les modes de datation de la production cartographique française depuis la fin du XVIIIe siècle. Il est composé de sept chapitres thématiques qui envisagent la multiplicité des pratiques des éditeurs et montrent qu’en fonction de l’usage envisagé pour chaque document et de son niveau de précision, les enjeux portés par la datation prennent des formes différentes. Numéro de notice : A2022-294 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : sans En ligne : http://www.e-perimetron.org/Vol_17_1/Arnaud.pdf Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100346
in e-Perimetron > vol 17 n° 1 (avril 2022) . - pp 1 - 18[article]Detecting individuals' spatial familiarity with urban environments using eye movement data / Hua Liao in Computers, Environment and Urban Systems, vol 93 (April 2022)
![]()
[article]
Titre : Detecting individuals' spatial familiarity with urban environments using eye movement data Type de document : Article/Communication Auteurs : Hua Liao, Auteur ; Wendi Zhao, Auteur ; Changbo Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101758 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse visuelle
[Termes IGN] apprentissage automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] navigation pédestre
[Termes IGN] oculométrie
[Termes IGN] service fondé sur la position
[Termes IGN] zone urbaine
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) The spatial familiarity of environments is an important high-level user context for location-based services (LBS). Knowing users' familiarity level of environments is helpful for enabling context-aware LBS that can automatically adapt information services according to users' familiarity with the environment. Unlike state-of-the-art studies that used questionnaires, sketch maps, mobile phone positioning (GPS) data, and social media data to measure spatial familiarity, this study explored the potential of a new type of sensory data - eye movement data - to infer users' spatial familiarity of environments using a machine learning approach. We collected 38 participants' eye movement data when they were performing map-based navigation tasks in familiar and unfamiliar urban environments. We trained and cross-validated a random forest classifier to infer whether the users were familiar or unfamiliar with the environments (i.e., binary classification). By combining basic statistical features and fixation semantic features, we achieved a best accuracy of 81% in a 10-fold classification and 70% in the leave-one-task-out (LOTO) classification. We found that the pupil diameter, fixation dispersion, saccade duration, fixation count and duration on the map were the most important features for detecting users' spatial familiarity. Our results indicate that detecting users' spatial familiarity from eye tracking data is feasible in map-based navigation and only a few seconds (e.g., 5 s) of eye movement data is sufficient for such detection. These results could be used to develop context-aware LBS that adapt their services to users' familiarity with the environments. Numéro de notice : A2022-121 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101758 Date de publication en ligne : 21/01/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101758 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99663
in Computers, Environment and Urban Systems > vol 93 (April 2022) . - n° 101758[article]Enriching the metadata of map images: a deep learning approach with GIS-based data augmentation / Yingjie Hu in International journal of geographical information science IJGIS, vol 36 n° 4 (April 2022)
![]()
[article]
Titre : Enriching the metadata of map images: a deep learning approach with GIS-based data augmentation Type de document : Article/Communication Auteurs : Yingjie Hu, Auteur ; Zhipeng Gui, Auteur ; Jimin Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 799 - 821 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] descripteur
[Termes IGN] données d'entrainement sans étiquette
[Termes IGN] image cartographique
[Termes IGN] métadonnées
[Termes IGN] projection
[Termes IGN] système d'information géographique
[Termes IGN] Web Map Service
[Termes IGN] web mappingRésumé : (auteur) Maps in the form of digital images are widely available in geoportals, Web pages, and other data sources. The metadata of map images, such as spatial extents and place names, are critical for their indexing and searching. However, many map images have either mismatched metadata or no metadata at all. Recent developments in deep learning offer new possibilities for enriching the metadata of map images via image-based information extraction. One major challenge of using deep learning models is that they often require large amounts of training data that have to be manually labeled. To address this challenge, this paper presents a deep learning approach with GIS-based data augmentation that can automatically generate labeled training map images from shapefiles using GIS operations. We utilize such an approach to enrich the metadata of map images by adding spatial extents and place names extracted from map images. We evaluate this GIS-based data augmentation approach by using it to train multiple deep learning models and testing them on two different datasets: a Web Map Service image dataset at the continental scale and an online map image dataset at the state scale. We then discuss the advantages and limitations of the proposed approach. Numéro de notice : A2022-258 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : https://doi.org/10.1080/13658816.2021.1968407 En ligne : https://doi.org/10.1080/13658816.2021.1968407 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100231
in International journal of geographical information science IJGIS > vol 36 n° 4 (April 2022) . - pp 799 - 821[article]Graph neural network based model for multi-behavior session-based recommendation / Bo Yu in Geoinformatica [en ligne], vol 26 n° 2 (April 2022)
![]()
[article]
Titre : Graph neural network based model for multi-behavior session-based recommendation Type de document : Article/Communication Auteurs : Bo Yu, Auteur ; Ruoqian Zhang, Auteur ; Wei Chen, Auteur ; Junhua Fang, Auteur Année de publication : 2022 Article en page(s) : pp 429 - 447 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] comportement
[Termes IGN] consommation
[Termes IGN] modèle de simulation
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau sémantique
[Termes IGN] service fondé sur la positionMots-clés libres : session Résumé : (auteur) Multi-behavior session-based recommendation aims to predict the next item, such as a location-based service (LBS) or a product, to be interacted by a specific behavior type (e.g., buy or click) in a session involving multiple types of behaviors. State-of-the-art methods generally model multi-behavior dependencies in item-level, but ignore the potential of discovering useful patterns of multi-behavior transition through feature-level representation learning. Besides, sequential and non-sequential patterns should be properly fused in session modeling to capture dynamic interests within the session. To this end, this paper proposes a Graph Neural Network based Hybrid Model GNNH, which enables feature-level deeper representations of multi-behavior interaction sequences for session-based recommendation. Specifically, we first construct multi-relational item graph (MRIG) and feature graph (MRFG) based on session sequences. On top of the MRIG and MRFG, our model takes advantage of GNN to capture item and feature representations, such that global item-to-item and feature-to-feature relations are fully preserved. Afterwards, each multi-behavior session is modeled by a seamless fusion of interacted item and feature representations, where self-attention and mean-pooling are used to obtain sequential and non-sequential patterns simultaneously. Experiments on two real datasets show that the GNNH model significantly outperforms the state-of-the-art methods. Numéro de notice : A2022-326 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.1007/s10707-021-00439-w Date de publication en ligne : 29/05/2021 En ligne : https://doi.org/10.1007/s10707-021-00439-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100489
in Geoinformatica [en ligne] > vol 26 n° 2 (April 2022) . - pp 429 - 447[article]Understanding the movement predictability of international travelers using a nationwide mobile phone dataset collected in South Korea / Yang Xu in Computers, Environment and Urban Systems, vol 92 (March 2022)
PermalinkQuickly locating POIs in large datasets from descriptions based on improved address matching and compact qualitative representations / Ruozhen Cheng in Transactions in GIS, vol 26 n° 1 (February 2022)
PermalinkAutomatic identification of addresses: A systematic literature review / Paula Cruz in ISPRS International journal of geo-information, vol 11 n° 1 (January 2022)
PermalinkContextual location recommendation for location-based social networks by learning user intentions and contextual triggers / Seyyed Mohammadreza Rahimi in Geoinformatica [en ligne], vol 26 n° 1 (January 2022)
PermalinkInteractive HGIS platform union of Lublin (1569): A geomatic solution for discovering the Jagiellonian heritage of the city / Jakub Kuna in Journal of Cultural Heritage, vol 53 (January–February 2022)
PermalinkA prediction model for surface deformation caused by underground mining based on spatio-temporal associations / Min Ren in Geomatics, Natural Hazards and Risk, vol 13 n° 1 (2022)
PermalinkLa photogrammétrie appliquée au récolement des réseaux enterrés : retour d’expérience d’une méthode industrialisée / Jérôme Leroux in XYZ, n° 169 (décembre 2021)
PermalinkValidation of the accuracy of geodetic automated measurement system based on GNSS platform for continuous monitoring of surface movements in post-mining areas / Violetta Sokoła-Szewioła in Reports on geodesy and geoinformatics, vol 112 n° 1 (December 2021)
PermalinkAnalytics of location-based big data for smart cities: Opportunities, challenges, and future directions / Haosheng Huang in Computers, Environment and Urban Systems, vol 90 (November 2021)
PermalinkInteractive maps for the production of knowledge and the promotion of participation from the perspective of communication, journalism, and digital humanities / Pedro Molina Rodríguez-Navas in ISPRS International journal of geo-information, vol 10 n° 11 (November 2021)
Permalink