Descripteur
Termes IGN > environnement > pollution > polluant > hydrocarbure
hydrocarbureVoir aussi |
Documents disponibles dans cette catégorie (87)



Etendre la recherche sur niveau(x) vers le bas
Decision fusion of deep learning and shallow learning for marine oil spill detection / Junfang Yang in Remote sensing, vol 14 n° 3 (February-1 2022)
![]()
[article]
Titre : Decision fusion of deep learning and shallow learning for marine oil spill detection Type de document : Article/Communication Auteurs : Junfang Yang, Auteur ; Yi Ma, Auteur ; Yabin Hu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 666 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de fusion
[Termes IGN] analyse multiéchelle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] hydrocarbure
[Termes IGN] image hyperspectrale
[Termes IGN] marée noire
[Termes IGN] milieu marin
[Termes IGN] pollution des mers
[Termes IGN] précision de la classification
[Termes IGN] sous ensemble flou
[Termes IGN] surveillance écologique
[Termes IGN] transformation en ondelettesRésumé : (auteur) Marine oil spills are an emergency of great harm and have become a hot topic in marine environmental monitoring research. Optical remote sensing is an important means to monitor marine oil spills. Clouds, weather, and light control the amount of available data, which often limit feature characterization using a single classifier and therefore difficult to accurate monitoring of marine oil spills. In this paper, we develop a decision fusion algorithm to integrate deep learning methods and shallow learning methods based on multi-scale features for improving oil spill detection accuracy in the case of limited samples. Based on the multi-scale features after wavelet transform, two deep learning methods and two classical shallow learning algorithms are used to extract oil slick information from hyperspectral oil spill images. The decision fusion algorithm based on fuzzy membership degree is introduced to fuse multi-source oil spill information. The research shows that oil spill detection accuracy using the decision fusion algorithm is higher than that of the single detection algorithms. It is worth noting that oil spill detection accuracy is affected by different scale features. The decision fusion algorithm under the first-level scale features can further improve the accuracy of oil spill detection. The overall classification accuracy of the proposed method is 91.93%, which is 2.03%, 2.15%, 1.32%, and 0.43% higher than that of SVM, DBN, 1D-CNN, and MRF-CNN algorithms, respectively. Numéro de notice : A2022-125 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14030666 Date de publication en ligne : 30/01/2022 En ligne : https://doi.org/10.3390/rs14030666 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99688
in Remote sensing > vol 14 n° 3 (February-1 2022) . - n° 666[article]Deep learning for detecting and classifying ocean objects: application of YoloV3 for iceberg–ship discrimination / Frederik Hass in ISPRS International journal of geo-information, vol 9 n° 12 (December 2020)
![]()
[article]
Titre : Deep learning for detecting and classifying ocean objects: application of YoloV3 for iceberg–ship discrimination Type de document : Article/Communication Auteurs : Frederik Hass, Auteur ; Jamal Jokar Arsanjani, Auteur Année de publication : 2020 Article en page(s) : n° 758 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] Groenland
[Termes IGN] hydrocarbure
[Termes IGN] iceberg
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] navire
[Termes IGN] océan
[Termes IGN] seuillage d'image
[Termes IGN] trafic maritimeRésumé : (auteur) Synthetic aperture radar (SAR) plays a remarkable role in ocean surveillance, with capabilities of detecting oil spills, icebergs, and marine traffic both at daytime and at night, regardless of clouds and extreme weather conditions. The detection of ocean objects using SAR relies on well-established methods, mostly adaptive thresholding algorithms. In most waters, the dominant ocean objects are ships, whereas in arctic waters the vast majority of objects are icebergs drifting in the ocean and can be mistaken for ships in terms of navigation and ocean surveillance. Since these objects can look very much alike in SAR images, the determination of what objects actually are still relies on manual detection and human interpretation. With the increasing interest in the arctic regions for marine transportation, it is crucial to develop novel approaches for automatic monitoring of the traffic in these waters with satellite data. Hence, this study aims at proposing a deep learning model based on YoloV3 for discriminating icebergs and ships, which could be used for mapping ocean objects ahead of a journey. Using dual-polarization Sentinel-1 data, we pilot-tested our approach on a case study in Greenland. Our findings reveal that our approach is capable of training a deep learning model with reliable detection accuracy. Our methodical approach along with the choice of data and classifiers can be of great importance to climate change researchers, shipping industries and biodiversity analysts. The main difficulties were faced in the creation of training data in the Arctic waters and we concluded that future work must focus on issues regarding training data. Numéro de notice : A2020-808 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9120758 Date de publication en ligne : 19/12/2020 En ligne : https://doi.org/10.3390/ijgi9120758 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96953
in ISPRS International journal of geo-information > vol 9 n° 12 (December 2020) . - n° 758[article]A novel deep learning instance segmentation model for automated marine oil spill detection / Shamsudeen Temitope Yekeen in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
![]()
[article]
Titre : A novel deep learning instance segmentation model for automated marine oil spill detection Type de document : Article/Communication Auteurs : Shamsudeen Temitope Yekeen, Auteur ; Abdul‐Lateef Balogun, Auteur ; Khamaruzaman B. Wan Yusof, Auteur Année de publication : 2020 Article en page(s) : pp 190 - 200 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] hydrocarbure
[Termes IGN] image radar moirée
[Termes IGN] marée noire
[Termes IGN] segmentation sémantique
[Termes IGN] vision par ordinateur
[Termes IGN] zone d'intérêtRésumé : (auteur) The visual similarity of oil slick and other elements, known as look-alike, affects the reliability of synthetic aperture radar (SAR) images for marine oil spill detection. So far, detection and discrimination of oil spill and look-alike are still limited to the use of traditional machine learning algorithms and semantic segmentation deep learning models with limited accuracy. Thus, this study developed a novel deep learning oil spill detection model using computer vision instance segmentation Mask-Region-based Convolutional Neural Network (Mask R-CNN) model. The model training was conducted using transfer learning on the ResNet 101 on COCO as backbone in combination with Feature Pyramid Network (FPN) architecture for feature extraction at 30 epochs with 0.001 learning rate. Testing of the model was conducted using the least training and validation loss value on the withheld testing images. The model’s performance was evaluated using precision, recall, specificity, IoU, F1-measure and overall accuracy values. Ship detection and segmentation had the highest performance with overall accuracy of 98.3%. The model equally showed a higher accuracy for oil spill and look-alike detection and segmentation although oil spill detection outperformed look-alike with overall accuracy values of 96.6% and 91.0% respectively. The study concluded that the deep learning instance segmentation model performs better than conventional machine learning models and deep learning semantic segmentation models in detection and segmentation. Numéro de notice : A2020-548 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.07.011 Date de publication en ligne : 28/07/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.07.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95774
in ISPRS Journal of photogrammetry and remote sensing > vol 167 (September 2020) . - pp 190 - 200[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020091 RAB Revue Centre de documentation En réserve 3L Disponible 081-2020093 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2020092 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt
[article]
Titre : Les pérégrinations d'un topographe en Chine Type de document : Article/Communication Auteurs : Bernard Flacelière, Auteur Année de publication : 2020 Article en page(s) : pp 61 - 67 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Topographie moderne
[Termes IGN] géodésie tridimensionnelle
[Termes IGN] hydrocarbure
[Termes IGN] mission de terrain
[Termes IGN] Mongolie intérieure (Chine)
[Termes IGN] point géodésique
[Termes IGN] système de référence géodésique
[Termes IGN] topographeRésumé : (auteur) C'est avec un clin d'oeil à Jules Verne et à son roman d'aventures paru en 1879, les Tribulations d'unChinois en Chine, que le topographe rapporte ici les quelques semaines vécues en Mongolie-Intérieure, à Chengdu au Sichuan et enfin à la capitale Beijing (figure 1). Une compagnie française d'exploration et de production d'hydrocarbures ayant obtenu de la part des autorités chinoises le contrat de développement d'un champ gazier déjà découvert, une campagne de sismique terrestre 3D est programmée, à suivre par des forages d'appréciation puis de développement et enfin la construction d'infrastructures dont des pistes, routes, gazoducs, centres de traitement et d'expédition. Des travaux
géodésiques sont donc nécessaires, avec rattachement au système géodésique officiel, établissement d'un réseau de détail et relevés des installations existantes. Comme dans de nombreux pays ayant grandi dans la culture du secret des informations géographiques, le topographe découvrira que la géodésie en Chine n'est pas une sinécure.Numéro de notice : A2020-555 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtSansCL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95824
in XYZ > n° 164 (septembre 2020) . - pp 61 - 67[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 112-2020031 SL Revue Centre de documentation Revues en salle Disponible 112-2020032 SL Revue Centre de documentation Revues en salle Disponible Applying the environmental sensitivity index for the assessment of the prospective oil spills along the Nile Delta Coast, Egypt / Rasha M. Abou Samra in Geocarto international, vol 35 n° 6 ([01/05/2020])
![]()
[article]
Titre : Applying the environmental sensitivity index for the assessment of the prospective oil spills along the Nile Delta Coast, Egypt Type de document : Article/Communication Auteurs : Rasha M. Abou Samra, Auteur ; Rasha Eissa, Auteur ; Maie El-Gammal, Auteur Année de publication : 2020 Article en page(s) : pp 589 - 601 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] analyse de sensibilité
[Termes IGN] environnement
[Termes IGN] hydrocarbure
[Termes IGN] impact sur l'environnement
[Termes IGN] Nil (delta du)
[Termes IGN] Nil (fleuve)
[Termes IGN] pétrole
[Termes IGN] pollution des mers
[Termes IGN] rivage
[Termes IGN] Suez, canal deRésumé : (auteur) The Nile Delta is located very close to the Suez Canal, the main route for oil transport in the world, makes it prone to pollution from any accidental oil spills in the Mediterranean Sea. The coast of the Nile Delta is generally arcuate and highly exposed to waves and currents. The present study attempted to perform the environmental sensitivity of the shoreline to oil slicks. Six variables were incorporated together in order to determine the environmental sensitivity index (ESI). Data were collected from different resources and from in situ observations. Results showed that the ESI is generally high for the western section of the Nile Delta, particularly along Alexandria region. Low ESI was observed along the shorelines facing the coastal sand dunes at the middle part of the delta coast. The ESI is an effective approach to delineate the vulnerable coastal areas to marine oil pollution. Numéro de notice : A2020-200 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1533592 Date de publication en ligne : 06/11/2018 En ligne : https://doi.org/10.1080/10106049.2018.1533592 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94870
in Geocarto international > vol 35 n° 6 [01/05/2020] . - pp 589 - 601[article]A novel nonlinear hyperspectral unmixing approach for images of oil spills at sea / Ying Li in International Journal of Remote Sensing IJRS, vol 41 n° 12 (20 - 30 March 2020)
PermalinkA machine learning approach to detect crude oil contamination in a real scenario using hyperspectral remote sensing / Ran Pelta in International journal of applied Earth observation and geoinformation, vol 82 (October 2019)
PermalinkHyperspectral analysis of soil polluted with four types of hydrocarbons / Laura A. Reséndez-Hernández in Geocarto international, vol 34 n° 9 ([15/06/2019])
PermalinkExploitation of hyperspectral data for assessing vegetation health under exposure to petroleum hydrocarbons / Guillaume Lassalle (2019)
PermalinkPermalinkPermalinkPermalinkEstimated location of the seafloor sources of marine natural oil seeps from sea surface outbreaks : A new "source path procedure" applied to the northern Gulf of Mexico / Zhour Najoui in Marine and Petroleum Geology, Vol 91 (March 2018)
PermalinkPermalinkn° 13 - février 2017 - Chiffres clés de l'énergie, édition 2016 (Bulletin de Datalab) / CGDD Commissariat Général au Développement Durable
![]()
Permalink