Descripteur
Termes IGN > imagerie > image spatiale > image satellite > image EOS > image Terra > image Terra-MODIS
image Terra-MODIS |
Documents disponibles dans cette catégorie (214)



Etendre la recherche sur niveau(x) vers le bas
Amazon forest spectral seasonality is consistent across sensor resolutions and driven by leaf demography / Nathan B. Gonçalves in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
![]()
[article]
Titre : Amazon forest spectral seasonality is consistent across sensor resolutions and driven by leaf demography Type de document : Article/Communication Auteurs : Nathan B. Gonçalves, Auteur ; Ricardo Dalagnol, Auteur ; Jin Wu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 93 - 104 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Amazonie
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] forêt tropicale
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-OLI
[Termes IGN] image proche infrarouge
[Termes IGN] image Terra-MODIS
[Termes IGN] indice de végétation
[Termes IGN] Leaf Area Index
[Termes IGN] réflectance spectrale
[Termes IGN] sécheresse
[Termes IGN] variation saisonnièreRésumé : (Auteur) Controversy surrounds the reported dry season greening of the Central Amazon forests based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS). As the solar zenith angle decreases during the dry season, it affects the sub-pixel shade content and artificially increases Near-infrared (NIR) reflectance and EVI. MODIS' coarse resolution also creates a challenge for cloud and terrain filtering. To reduce these artifacts and then validate MODIS seasonal spectral patterns we use 16 years of 1 km resolution MODIS-MAIAC (Multi-Angle Implementation of Atmospheric Correction) images, corrected to a nadir view and 45° solar zenith angle, together with an improved cloud filter. Then we show that the 30 m Landsat-8 Operational Land Imager (OLI) surface reflectance over two Landsat scenes provides independent evidence supporting the MODIS-MAIAC seasonality for EVI, NIR, and GCC (an additional important vegetation index, green chromatic coordinate). Our empirical method for controlling for sun-sensor geometry effects in Landsat scenes encompasses the use of seasonally distinct images that have similar solar zenith angles and cloud-free pixels on flat uplands having the same phase angle. We extended this validation to nine Amazon sub-basins comprising ∼546 Landsat-8 images. Our study shows that the dry-season green-up pattern observed by MODIS is corroborated by Landsat-8, and is independent of satellite data artifacts. To investigate the mechanisms driving these seasonal changes we further used Central Amazon tower-mounted RGB cameras providing a 4-year record at the Amazon Tall Tower (ATTO, 2°8′36″S, 59°0′2″W) and a 7-year record at the Manaus k34 tower (2°36′33″ S, 60°12′33″W) to obtain monthly upper canopy green leaf cover (a proxy for Leaf Area Index - LAI) and monthly leaf age class abundances (based on the age since leaf flushing, by crown). These were compared to seasonal patterns of GCC and EVI in small MODIS-MAIAC windows centered on each tower. MODIS-MAIAC GCC was positively correlated with newly flushed leaves (R2 = 0.76 and 0.44 at ATTO and k34, respectively). EVI correlated strongly with the abundance of mature leaves (R2 = 0.82 and 0.80) but was poorly correlated with LAI (R2 = 0.20 and 0.41, respectively). Therefore, seasonal spectral patterns in the Central Amazon are likely controlled by leaf age variation, not quantity of leaf area. Numéro de notice : A2023-065 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.001 Date de publication en ligne : 04/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.001 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102423
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 93 - 104[article]Decadal assessment of agricultural drought in the context of land use land cover change using MODIS multivariate spectral index time-series data / Thuong V. Tran in GIScience and remote sensing, vol 60 n° 1 (2023)
![]()
[article]
Titre : Decadal assessment of agricultural drought in the context of land use land cover change using MODIS multivariate spectral index time-series data Type de document : Article/Communication Auteurs : Thuong V. Tran, Auteur ; David Bruce, Auteur ; Cho-Ying Huang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2163070 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spectrale
[Termes IGN] changement d'occupation du sol
[Termes IGN] image Terra-MODIS
[Termes IGN] indice d'humidité
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] parcelle agricole
[Termes IGN] sécheresse
[Termes IGN] série temporelle
[Termes IGN] surveillance agricole
[Termes IGN] variation temporelle
[Termes IGN] Viet NamRésumé : (auteur) Using a multivariate drought index that incorporates important environmental variables and is suitable for a specific geographical region is essential to fully understanding the pattern and impacts of drought severity. This study applied feature scaling algorithms to MODIS time-series imagery to develop an integrated Multivariate Drought Index (iMDI). The iMDI incorporates the vegetation condition index (VCI), the temperature condition index (TCI), and the evaporative stress index (ESI). The 54,474 km2 Vietnamese Central Highlands region, which has been significantly affected by drought severity for several decades, was selected as a test site to assess the feasibility of the iMDI. Spearman correlation between the iMDI and other commonly used spectral drought indices (i.e. the Drought Severity Index (DSI–12) and the annual Vegetation Health Index (VHI–12)) and ground-based drought indices (i.e. the Standardized Precipitation Index (SPI–12) and the Reconnaissance Drought Index (RDI–12)) was employed to evaluate performance of the proposed drought index. Pixel-based linear regression together with clustering models of the iMDI time-series was applied to characterize the spatiotemporal pattern of drought from 2001 to 2020. In addition, a persistent area of LULC types (i.e. forests, croplands, and shrubland) during the 2001–2020 period was used to understand drought variation in relation to LULC. Results suggested that the iMDI outperformed the other spectral drought indices (r > 0.6; p Numéro de notice : A2023-042 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/15481603.2022.2163070 Date de publication en ligne : 03/01/2023 En ligne : https://doi.org/10.1080/15481603.2022.2163070 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102329
in GIScience and remote sensing > vol 60 n° 1 (2023) . - n° 2163070[article]A simple approach to enhance the TROPOMI solar-induced chlorophyll fluorescence product by combining with canopy reflected radiation at near-infrared band / Xinjie Liu in Remote sensing of environment, vol 284 (January 2023)
![]()
[article]
Titre : A simple approach to enhance the TROPOMI solar-induced chlorophyll fluorescence product by combining with canopy reflected radiation at near-infrared band Type de document : Article/Communication Auteurs : Xinjie Liu, Auteur ; Liangyun Liu, Auteur ; Cédric Bacour, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 113341 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] canopée
[Termes IGN] chlorophylle
[Termes IGN] fluorescence
[Termes IGN] image Sentinel-5P-TROPOMI
[Termes IGN] image Terra-MODIS
[Termes IGN] production primaire brute
[Termes IGN] rayonnement proche infrarouge
[Termes IGN] réflectance de surface
[Termes IGN] réflectance végétaleRésumé : (auteur) Satellite-based data of solar-induced chlorophyll fluorescence (SIF) and the near-infrared radiation reflected by vegetation (NIRvP) are being increasingly used for the estimation of vegetation gross primary product (GPP) at the global scale. Although SIF contains more physiological information than NIRvP, NIRvP can have higher data quality and spatio-temporal resolution. Therefore, the two variables can be considered complementary for GPP monitoring. Here, we propose a simple framework to combine SIF and NIRvP data from different data sources to generate an enhanced SIF product (eSIF). The original SIF data comes from the TROPOMI instrument onboard the Sentinel-5P mission, whereas NIRvP data are derived from MODIS spectral reflectance and ERA5 reanalysis data. The resulting eSIF product has a spatial resolution of 0.05° and a temporal resolution of 8 days, as well as a higher signal-to-noise ratio and a lower angular dependency than the original TROPOMI SIF data. Our results demonstrate that eSIF has similar spatial patterns to the original SIF but is more spatially continuous and less noisy. Comparisons with the FLUXCOM global GPP product show that eSIF has a more universal relationship with GPP than NIRvP for different grass/crop plant functional types (the coefficients of variation are 18.9% for slopes of GPP to eSIF and 27.3% for slopes of GPP to NIRvP), but NIRvP outperforms eSIF for tracking GPP for forest PFTs exclude BoENF. Moreover, eSIF is able to better track the seasonal variations in GPP related to environmental stresses. This study highlights that our methodology based on the combination of SIF and NIRvP is a promising approach for better monitoring of GPP. Numéro de notice : A2023-017 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113341 Date de publication en ligne : 07/11/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113341 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102151
in Remote sensing of environment > vol 284 (January 2023) . - n° 113341[article]Estimating 10-m land surface albedo from Sentinel-2 satellite observations using a direct estimation approach with Google Earth Engine / Xingwen Lin in ISPRS Journal of photogrammetry and remote sensing, vol 194 (December 2022)
![]()
[article]
Titre : Estimating 10-m land surface albedo from Sentinel-2 satellite observations using a direct estimation approach with Google Earth Engine Type de document : Article/Communication Auteurs : Xingwen Lin, Auteur ; Shengbiao Wu, Auteur ; Bin Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1 - 20 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] albedo
[Termes IGN] bande spectrale
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] Google Earth Engine
[Termes IGN] hétérogénéité spatiale
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Terra-MODIS
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de transfert radiatif
[Termes IGN] phénologie
[Termes IGN] réflectance de surfaceRésumé : (auteur) Land surface albedo plays an important role in controlling the surface energy budget and regulating the biophysical processes of natural dynamics and anthropogenic activities. Satellite remote sensing is the only practical approach to estimate surface albedo at regional and global scales. It nevertheless remains challenging for current satellites to capture fine-scale albedo variations due to their coarse spatial resolutions from tens to hundreds of meters. The emerging Sentinel-2 satellites, with a high spatial resolution of 10 m and an approximate 5-day revisiting cycle, provide a promising solution to address these observational limitations, yet their potentials remain underexplored. In this study, we integrated the Sentinel-2 observations with an updated direct estimation approach to improve the estimation and monitoring of fine-scale surface albedo. To enable the capability of the direct estimation approach at a 10-m scale, we combined the 10-m resolution European Space Agency (ESA) WorldCover land cover data and the 500-m resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF)/albedo product to build a high-quality and representative BRDF training database. To evaluate our approach, we proposed an integrated evaluation framework leveraging 3-D physical model simulations, ground measurements, and satellite observations. Specifically, we first simulated a comprehensive dataset of Sentinel-2-like surface reflectance and broadband albedo across a variety of geometric configurations using the MODIS BRDF training samples. With this dataset, we built the Look-Up-Tables (LUTs) that connect surface broadband albedo and Sentinel-2 reflectance through a direct angular bin-based linear regression approach, and further coupled these LUTs with the Google Earth Engine (GEE) cloud-computing platform. We next evaluated the proposed algorithm at two spatial levels: (1) 10-m scale for absolute accuracy assessment using the references from the Discrete Anisotropic Radiative Transfer (DART) simulations and flux-site observations, and (2) 500-m scale for large-scale mapping assessment by comparing the estimated albedo with the MODIS albedo product. Lastly, we presented four examples to show the capability of Sentinel-2 albedo in detecting fine-scale characteristics of vegetation and urban covers. Results show that: (1) the proposed algorithm accurately estimates surface albedo from Sentinel-2-like reflectance across different landscape configurations (overall root-mean-square-error (RMSE) = 0.018, bias = 0.005, and coefficient of determination (R2) = 0.88); (2) the Sentinel-2-derived surface albedo agrees well with ground measurements (overall RMSE = 0.030, bias = -0.004, and R2 = 0.94) and MODIS products (overall RMSE = 0.030, bias = 0.021, and R2 = 0.97); and (3) Sentinel-2-derived albedo accurately captures seasonal leaf phenology and rapid snow events, and detects the interspecific (or interclass) variations of tree species and colored urban rooftops. These results demonstrate the capability of the proposed approach to map high-resolution surface albedo from Sentinel-2 satellites over large spatial and temporal contexts, suggesting the potential of using such fine-scale datasets to improve our understanding of albedo-related biophysical processes in the coupled human-environment system. Numéro de notice : A2022-823 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.09.016 Date de publication en ligne : 14/10/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.09.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101999
in ISPRS Journal of photogrammetry and remote sensing > vol 194 (December 2022) . - pp 1 - 20[article]Spatio-temporal patterns of wildfires in Siberia during 2001–2020 / Oleg Tomshin in Geocarto international, vol 37 n° 25 ([01/12/2022])
![]()
[article]
Titre : Spatio-temporal patterns of wildfires in Siberia during 2001–2020 Type de document : Article/Communication Auteurs : Oleg Tomshin, Auteur ; Vladimir Solovyev, Auteur Année de publication : 2022 Article en page(s) : pp 7339 - 7357 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] changement climatique
[Termes IGN] image radar moirée
[Termes IGN] image Terra-MODIS
[Termes IGN] incendie de forêt
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] occupation du sol
[Termes IGN] précipitation
[Termes IGN] réflectance de surface
[Termes IGN] Sibérie
[Termes IGN] température de l'airRésumé : (auteur) Siberia is one of the most fire-prone regions of northern Eurasia and also the region with the greatest warming in the Eastern Hemisphere over the last decades. In this study, spatiotemporal features of wildfires in Siberia and their recent trends and relationship with air temperature and precipitation during 2001–2020 were investigated. The main results show that the annual burned area (BA) in Siberia during the study period is 6.5 Mha with a non-significant positive trend (58 kha year−1, p = 0.49), but analysis of the spatial patterns revealed regions with significant trends in BA: negative in the south of Western Siberia (−17 kha year−1, p Numéro de notice : A2022-926 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2021.1973581 Date de publication en ligne : 06/09/2021 En ligne : https://doi.org/10.1080/10106049.2021.1973581 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102659
in Geocarto international > vol 37 n° 25 [01/12/2022] . - pp 7339 - 7357[article]Modelling and accessing land degradation vulnerability using remote sensing techniques and the analytical hierarchy process approach / Abebe Debele Tolche in Geocarto international, vol 37 n° 24 ([20/10/2022])
PermalinkThe FIRST model: Spatiotemporal fusion incorrporting spectral autocorrelation / Shuaijun Liu in Remote sensing of environment, vol 279 (September-15 2022)
PermalinkLarge-area high spatial resolution albedo retrievals from remote sensing for use in assessing the impact of wildfire soot deposition on high mountain snow and ice melt / André Bertoncini in Remote sensing of environment, vol 278 (September 2022)
PermalinkMapping annual urban evolution process (2001–2018) at 250 m: A normalized multi-objective deep learning regression / Haoyu Wang in Remote sensing of environment, vol 278 (September 2022)
PermalinkAn investigation into heat storage by adopting local climate zones and nocturnal-diurnal urban heat island differences in the Tokyo Prefecture / Christopher O'Malley in Sustainable Cities and Society, vol 83 (August 2022)
PermalinkMainstreaming remotely sensed ecosystem functioning in ecological niche models / Adrián Regos in Remote sensing in ecology and conservation, vol 8 n° 4 (August 2022)
PermalinkHeat wave-induced augmentation of surface urban heat islands strongly regulated by rural background / Shiqi Miao in Sustainable Cities and Society, vol 82 (July 2022)
PermalinkVariance based fusion of VCI and TCI for efficient classification of agriculture drought using MODIS data / Anjana N.J. Kukunuri in Geocarto international, vol 37 n° 10 ([01/06/2022])
PermalinkSpatial-temporal variation of satellite-based gross primary production estimation in wheat-maize rotation area during 2000–2015 / Wenquan Xie in Geocarto international, vol 37 n° 9 ([15/05/2022])
PermalinkDevelopment of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model / Han Ma in Remote sensing of environment, vol 273 (May 2022)
Permalink