Descripteur
Documents disponibles dans cette catégorie (119)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Evaluation of growth models for mixed forests used in Swedish and Finnish decision support systems / Jorge Aldea in Forest ecology and management, vol 529 (February-1 2023)
[article]
Titre : Evaluation of growth models for mixed forests used in Swedish and Finnish decision support systems Type de document : Article/Communication Auteurs : Jorge Aldea, Auteur ; Simone Bianchi, Auteur ; Urban Nilsson, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 120721 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Betula (genre)
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle de simulation
[Termes IGN] peuplement mélangé
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] Suède
[Termes IGN] système d'aide à la décision
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Interest in mixed forests is increasing since they could provide higher benefits and positive externalities compared to monocultures, although their management is more complex and silvicultural prescriptions for them are still scarce. Growth simulations are a powerful tool for developing useful guidelines for mixed stands. Heureka and Motti are two decision support systems commonly used for forest management in Sweden and Finland respectively. They were developed mostly with data from pure stands, so how they would perform in mixed stands is currently uncertain. We compiled a large and updated common database of well-replicated experimental research sites and monitoring networks composed by 218 and 1,160 plot-level observations of mixed stands from Sweden and Finland, respectively. We aimed to evaluated the accuracy of Heureka and Motti basal area growth models in those mixed-species stands and to detect any bias in their short-term predictions. Basal area growth simulations (excluding mortality models) were compared to observed stand-level values in a period-wise process with update of the start values in each period. The residual plots were visually examined for different stand mixtures: Norway spruce (Picea abies Karst.)-birch (Betula spp), Scots pine (Pinus sylvestris L.)-birch and Scots pine-Norway spruce. We observed that the basal area growth models in both decision support systems performed quite well for all mixtures regardless of the proportion of species. Motti simulations overestimated growth in Scots pine-Norway spruce mixtures by 0.063 m2·ha−1·year−1 which may be acceptable for practical use. Therefore, we corroborated that both decision support systems can be currently utilized for short-term forest growth simulation of mixed boreal forests. Numéro de notice : A2023-107 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2022.120721 Date de publication en ligne : 28/12/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120721 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102441
in Forest ecology and management > vol 529 (February-1 2023) . - n° 120721[article]A model-based scenario analysis of the impact of forest management and environmental change on the understorey of temperate forests in Europe / Bingbin Wen in Forest ecology and management, vol 522 (October-15 2022)
[article]
Titre : A model-based scenario analysis of the impact of forest management and environmental change on the understorey of temperate forests in Europe Type de document : Article/Communication Auteurs : Bingbin Wen, Auteur ; Haben Blondeel, Auteur ; Dries Landuyt, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 120465 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de sensibilité
[Termes IGN] azote
[Termes IGN] biodiversité
[Termes IGN] changement climatique
[Termes IGN] dynamique de la végétation
[Termes IGN] Europe centrale
[Termes IGN] forêt tempérée
[Termes IGN] gestion forestière durable
[Termes IGN] impact sur l'environnement
[Termes IGN] modèle de simulation
[Termes IGN] sous-étage
[Termes IGN] système d'aide à la décision
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) The temperate forest understorey is rich in terms of vascular plant diversity and plays a vital functional role. Given the sensitivity of this forest layer to forest management and global environmental change and the limited knowledge on its long-term dynamics, there is a need for decision support systems that can guide temperate forest managers to optimize their management in terms of understorey outcomes. In this study, using understorey resurvey data collected from across temperate Europe, we developed Generalized Additive Models (GAM) to predict four understorey properties based on forest management and environmental change data, and implemented this model in a web-based tool as a prototype understorey Decision Support System (DSS). Using seventy-two combined climate change, nitrogen(N) deposition and forest management scenarios, applied to two case study regions in Europe, we predicted temperate forest understorey biodiversity dynamics between 2020 and 2050. A sensitivity analysis subsequently allowed to quantify the relative importance of canopy opening, N deposition and climate change on understorey dynamics. Our study showed that, regardless of regions, understorey richness and the proportion of forest specialists generally decreased among most scenarios, but the proportion of woody species and the understorey vegetation total cover increased. Climate warming, N deposition, and increases in canopy openness all influenced understorey dynamics. Climate warming will shift composition towards a selection of forest generalists and woody species, but a less open canopy could mitigate this shift by increasing the proportion of forest specialists. The case studies also showed that these responses can be context-dependent, especially in terms of responses to N deposition. Numéro de notice : A2022-710 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2022.120465 Date de publication en ligne : 19/08/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120465 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101587
in Forest ecology and management > vol 522 (October-15 2022) . - n° 120465[article]Deep learning–based monitoring sustainable decision support system for energy building to smart cities with remote sensing techniques / Wang Yue in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 9 (September 2022)
[article]
Titre : Deep learning–based monitoring sustainable decision support system for energy building to smart cities with remote sensing techniques Type de document : Article/Communication Auteurs : Wang Yue, Auteur ; Changgang Yu, Auteur ; A. Antonidoss, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 593 - 601 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] apprentissage profond
[Termes IGN] bâtiment
[Termes IGN] capteur (télédétection)
[Termes IGN] économie d'énergie
[Termes IGN] internet des objets
[Termes IGN] performance énergétique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] système d'aide à la décision
[Termes IGN] ville durable
[Termes IGN] ville intelligenteRésumé : (auteur) In modern society, energy conservation is an important consideration for sustainability. The availability of energy-efficient infrastructures and utilities depend on the sustainability of smart cities. The big streaming data generated and collected by smart building devices and systems contain useful information that needs to be used to make timely action and better decisions. The ultimate objective of these procedures is to enhance the city's sustainability and livability. The replacement of decades-old infrastructures, such as underground wiring, steam pipes, transportation tunnels, and high-speed Internet installation, is already a major problem for major urban regions. There are still certain regions in big cities where broadband wireless service is not available. The decision support system is recently acquiring increasing attention in the smart city context. In this article, a deep learning–based sustainable decision support system (DLSDSS) has been proposed for energy building in smart cities. This study proposes the integration of the Internet of Things into smart buildings for energy management, utilizing deep learning methods for sensor information decision making. Building a socially advanced environment aims to enhance city services and urban administration for residents in smart cities using remote sensing techniques. The proposed deep learning methods classify buildings based on energy efficiency. Data gathered from the sensor network to plan smart cities' development include a deep learning algorithm's structural assembly of data. The deep learning algorithm provides decision makers with a model for the big data stream. The numerical results show that the proposed method reduces energy consumption and enhances sensor data accuracy by 97.67% with better decision making in planning smart infrastructures and services. The experimental outcome of the DLSDSS enhances accuracy (97.67%), time complexity (98.7%), data distribution rate (97.1%), energy consumption rate (98.2%), load shedding ratio (95.8%), and energy efficiency (95.4%). Numéro de notice : A2022-812 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.22-00010R2 Date de publication en ligne : 01/09/2022 En ligne : https://doi.org/10.14358/PERS.22-00010R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101972
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 9 (September 2022) . - pp 593 - 601[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022091 SL Revue Centre de documentation Revues en salle Disponible Révision de la chaîne de valorisation des données en système d’information décisionnel / Quentin Courtiade (2022)
Titre : Révision de la chaîne de valorisation des données en système d’information décisionnel Type de document : Mémoire Auteurs : Quentin Courtiade, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2022 Importance : 63 p. Format : 21 x 30 cm Note générale : Bibliographie
Rapport de projet pluridisciplinaire, cycle ING2Langues : Français (fre) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] données massives
[Termes IGN] entrepôt de données localisées
[Termes IGN] indexation
[Termes IGN] intégration de données
[Termes IGN] Nouvelle-Calédonie
[Termes IGN] outil d'aide à la décision
[Termes IGN] Python (langage de programmation)
[Termes IGN] SQL
[Termes IGN] système d'information
[Termes IGN] tableau de bord
[Termes IGN] valorisation des donnéesIndex. décimale : PROJET Mémoires : Rapports de projet - stage des ingénieurs de 2e année Résumé : (Auteur) L’Observatoire de l’Environnement en Nouvelle-Calédonie (OEIL) a pour ambition de traduire les pressions, l’état et les réponses qui s’exercent sur l’environnement néo-calédonien. Le pôle Système d’Information, par la mise en place d’un nouveau Système d’Information Décisionnel (SID) au moyen d’une révision de la chaîne de valorisation des données, espère améliorer la rapidité de ses services et en faciliter la maintenance. Le présent stage doit ainsi étudier et mettre en place les outils et méthodes qui constitueront les briques élémentaires de ce futur SID. Afin de répondre aux nécessités de l’entreprise, préalablement à l’intégration des données dans un entrepôt, une étape d’indexation de ces dernières sur une grille hexagonale H3 est établie afin de simplifier le croisement entre sources de données. Une parallélisation des processus est, de surcroît, mise en place au moyen de la librairie Python Dask afin d’assurer le traitement de quantités massives de données. Ce document étudie également comment mettre en place un générateur de code SQL à l’aide de l’outil Data Build Tool (DBT) afin de réaliser des croisements (multi-)thématiques entre les données préalablement indexées. Ces croisements, regroupés en magasins de données sont, par la suite, diffusés via des services web et consommés par des tableaux de bord ou d’autres outils de la manière la plus performante possible. L’indexation des données et la génération automatique de code SQL ont permis une standardisation de la chaîne de valorisation des données, facilitant ainsi sa maintenance. Les tableaux de bord ont également gagné en performance. Note de contenu : Introduction
1. Intégration des données sources dans un entrepôt de données
1.1 Réflexion autour de la structure de l’entrepôt de données
1.2 Validation des concepts et méthodes sur un faible jeu de données
1.3 Mise en œuvre à grande échelle
2. Création et diffusion des magasins de données
2.1 Réflexion autour des outils et méthodes
2.2 Mise en œuvre des outils et méthodes
2.3 Caractérisation des performances et perspectives
ConclusionNuméro de notice : 26864 Affiliation des auteurs : IGN (2020- ) Thématique : GEOMATIQUE Nature : Mémoire de projet pluridisciplinaire Organisme de stage : Observatoire de l’Environnement en Nouvelle-Calédonie OEIL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101652 Documents numériques
en open access
Révision de la chaîne de valorisation des données en système d’information décisionnelAdobe Acrobat PDF Flood depth mapping in street photos with image processing and deep neural networks / Bahareh Alizadeh Kharazi in Computers, Environment and Urban Systems, vol 88 (July 2021)
[article]
Titre : Flood depth mapping in street photos with image processing and deep neural networks Type de document : Article/Communication Auteurs : Bahareh Alizadeh Kharazi, Auteur ; Amir H. Behzadan, Auteur Année de publication : 2021 Article en page(s) : n° 101628 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] Canada
[Termes IGN] centre urbain
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] crue
[Termes IGN] détection de contours
[Termes IGN] Etats-Unis
[Termes IGN] image Streetview
[Termes IGN] inondation
[Termes IGN] profondeur
[Termes IGN] signalisation routière
[Termes IGN] système d'aide à la décision
[Termes IGN] traitement d'image
[Termes IGN] transformation de Hough
[Termes IGN] zone urbaineRésumé : (auteur) Many parts of the world experience severe episodes of flooding every year. In addition to the high cost of mitigation and damage to property, floods make roads impassable and hamper community evacuation, movement of goods and services, and rescue missions. Knowing the depth of floodwater is critical to the success of response and recovery operations that follow. However, flood mapping especially in urban areas using traditional methods such as remote sensing and digital elevation models (DEMs) yields large errors due to reshaped surface topography and microtopographic variations combined with vegetation bias. This paper presents a deep neural network approach to detect submerged stop signs in photos taken from flooded roads and intersections, coupled with Canny edge detection and probabilistic Hough transform to calculate pole length and estimate floodwater depth. Additionally, a tilt correction technique is implemented to address the problem of sideways tilt in visual analysis of submerged stop signs. An in-house dataset, named BluPix 2020.1 consisting of paired web-mined photos of submerged stop signs across 10 FEMA regions (for U.S. locations) and Canada is used to evaluate the models. Overall, pole length is estimated with an RMSE of 17.43 and 8.61 in. in pre- and post-flood photos, respectively, leading to a mean absolute error of 12.63 in. in floodwater depth estimation. Findings of this research are sought to equip jurisdictions, local governments, and citizens in flood-prone regions with a simple, reliable, and scalable solution that can provide (near-) real time estimation of floodwater depth in their surroundings. Numéro de notice : A2021-358 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101628 Date de publication en ligne : 01/04/2021 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101628 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97620
in Computers, Environment and Urban Systems > vol 88 (July 2021) . - n° 101628[article]Prevention of erosion in mountain basins: A spatial-based tool to support payments for forest ecosystem services / Sandro Sacchelli in Journal of forest science, vol 67 n° 6 (July 2021)PermalinkMitigating urban visual pollution through a multistakeholder spatial decision support system to optimize locational potential of billboards / Khydija Wakil in ISPRS International journal of geo-information, vol 10 n° 2 (February 2021)PermalinkPermalinkPermalinkInteroperable information model for geovisualization and interaction in XR environments / Daeil Seo in International journal of geographical information science IJGIS, vol 34 n° 7 (July 2020)PermalinkA web-based spatial decision support system for monitoring the risk of water contamination in private wells / Yu Lan in Annals of GIS, vol 26 n° 3 (July 2020)PermalinkPermalinkL'information aéronautique à ciel ouvert / Pascal Sénard (2019)PermalinkTowards improving knowledge capitalization system for sport events legacy / Malika Grim-Yefsah (2019)PermalinkOPTEER, un dispositif de connaissance et d’analyse territoriale par et pour les acteurs de la transition énergétique / Marie-Hélène de Sède-Marceau in Revue internationale de géomatique, vol 28 n° 1 (janvier - mars 2018)Permalink