Descripteur
Termes IGN > sciences naturelles > sciences de la vie > médecine humaine > maladie infectieuse > épidémie
épidémie |
Documents disponibles dans cette catégorie (54)



Etendre la recherche sur niveau(x) vers le bas
Assessing COVID-induced changes in spatiotemporal structure of mobility in the United States in 2020: a multi-source analytical framework / Evgeny Noi in International journal of geographical information science IJGIS, vol 36 n° 3 (March 2022)
![]()
[article]
Titre : Assessing COVID-induced changes in spatiotemporal structure of mobility in the United States in 2020: a multi-source analytical framework Type de document : Article/Communication Auteurs : Evgeny Noi, Auteur ; Alexander Rudolph, Auteur ; Somayeh Dodge, Auteur Année de publication : 2022 Article en page(s) : pp 585 - 616 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] autocorrélation spatiale
[Termes IGN] comportement
[Termes IGN] données multisources
[Termes IGN] données spatiotemporelles
[Termes IGN] épidémie
[Termes IGN] Etats-Unis
[Termes IGN] hétérogénéité spatiale
[Termes IGN] maladie virale
[Termes IGN] mobilité
[Termes IGN] mobilité territorialeRésumé : (auteur) The COVID-19 pandemic resulted in profound changes in mobility patterns and altered travel behaviors locally and globally. As a result, movement metrics have widely been used by researchers and policy makers as indicators to study, model, and mitigate the impacts of the COVID-19 pandemic. However, the veracity and variability of these mobility metrics have not been studied. This paper provides a systematic review of mobility and social distancing metrics available to researchers during the pandemic in 2020 in the United States. Twenty-six indices across nine different sources are analyzed and assessed with respect to their spatial and temporal coverage as well as sample representativeness at the county-level. Finally global and local indicators of spatial association are computed to explore spatial and temporal heterogeneity in mobility patterns. The structure of underlying changes in mobility and social distancing is examined in different US counties and across different data sets. We argue that a single measure might not describe all aspects of mobility perfectly. Numéro de notice : A2022-207 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.2005796 Date de publication en ligne : 21/12/2021 En ligne : https://doi.org/10.1080/13658816.2021.2005796 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100023
in International journal of geographical information science IJGIS > vol 36 n° 3 (March 2022) . - pp 585 - 616[article]Changing mobility patterns in the Netherlands during COVID-19 outbreak / Sander Van Der Drift in Journal of location-based services, vol 16 n° 1 (March 2022)
![]()
[article]
Titre : Changing mobility patterns in the Netherlands during COVID-19 outbreak Type de document : Article/Communication Auteurs : Sander Van Der Drift, Auteur ; Luc Wismans, Auteur ; Marie-José Olde-Kalter, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 24 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] bicyclette
[Termes IGN] comportement
[Termes IGN] épidémie
[Termes IGN] estimation bayesienne
[Termes IGN] mobilité territoriale
[Termes IGN] Pays-Bas
[Termes IGN] téléphone intelligent
[Termes IGN] transport
[Termes IGN] transport public
[Termes IGN] travail à domicile
[Termes IGN] véhicule automobileRésumé : (auteur) The COVID-19 outbreak and associated measures taken had an enormous impact on society as well as a disruptive, but not necessarily negative, impact on mobility. The Ministry of Infrastructure and Water Management received the most recent insights from the Dutch Mobility Panel (DMP) on a weekly basis. These insights were used to monitor the travel behaviour and to analyse changes in the behaviour of different groups and usage of modes of transport during COVID-19. The analysis shows an enormous decrease in travel at the beginning of the implementation of the so-called ‘intelligent’ lockdown and gradual increase again towards comparable levels as before this ‘intelligent lockdown, although the distribution over time, motives and used modes has changed. It becomes clear that not everyone needs to travel during peak hours and commuter travel is also not the main reason for the increase in car usage. Furthermore, cycling has shown to be an alternative option for travellers and public transport is hardly used anymore. If it is possible to sustain the lower level of car usage and integrate public transport as an important alternative for travel again, the COVID-19 impact on mobility could have a substantial remaining positive impact on mobility. Numéro de notice : A2022-391 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/17489725.2021.1876259 Date de publication en ligne : 11/03/2021 En ligne : https://doi.org/10.1080/17489725.2021.1876259 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100682
in Journal of location-based services > vol 16 n° 1 (March 2022) . - pp 1 - 24[article]Early warning of COVID-19 hotspots using human mobility and web search query data / Takahiro Yabe in Computers, Environment and Urban Systems, vol 92 (March 2022)
![]()
[article]
Titre : Early warning of COVID-19 hotspots using human mobility and web search query data Type de document : Article/Communication Auteurs : Takahiro Yabe, Auteur ; Kota Tsubouchi, Auteur ; Yoshihide Sekimoto, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101747 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] aide à la localisation
[Termes IGN] analyse de données
[Termes IGN] analyse de groupement
[Termes IGN] épidémie
[Termes IGN] exploration de données
[Termes IGN] maladie virale
[Termes IGN] mobilité urbaine
[Termes IGN] modèle de simulation
[Termes IGN] prévention des risques
[Termes IGN] requête spatiale
[Termes IGN] ressources web
[Termes IGN] surveillance sanitaire
[Termes IGN] Tokyo (Japon)Résumé : (auteur) COVID-19 has disrupted the global economy and well-being of people at an unprecedented scale and magnitude. To contain the disease, an effective early warning system that predicts the locations of outbreaks is of crucial importance. Studies have shown the effectiveness of using large-scale mobility data to monitor the impacts of non-pharmaceutical interventions (e.g., lockdowns) through population density analysis. However, predicting the locations of potential outbreak occurrence is difficult using mobility data alone. Meanwhile, web search queries have been shown to be good predictors of the disease spread. In this study, we utilize a unique dataset of human mobility trajectories (GPS traces) and web search queries with common user identifiers (> 450 K users), to predict COVID-19 hotspot locations beforehand. More specifically, web search query analysis is conducted to identify users with high risk of COVID-19 contraction, and social contact analysis was further performed on the mobility patterns of these users to quantify the risk of an outbreak. Our approach is empirically tested using data collected from users in Tokyo, Japan. We show that by integrating COVID-19 related web search query analytics with social contact networks, we are able to predict COVID-19 hotspot locations 1–2 weeks beforehand, compared to just using social contact indexes or web search data analysis. This study proposes a novel method that can be used in early warning systems for disease outbreak hotspots, which can assist government agencies to prepare effective strategies to prevent further disease spread. Human mobility data and web search query data linked with common IDs are used to predict COVID-19 outbreaks. High risk social contact index captures both the contact density and COVID-19 contraction risks of individuals. Real world data was collected from 200 K individual users in Tokyo during the COVID-19 pandemic. Experiments showed that the index can be used for microscopic outbreak early warning. Numéro de notice : A2022-114 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101747 Date de publication en ligne : 17/12/2021 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101747 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99637
in Computers, Environment and Urban Systems > vol 92 (March 2022) . - n° 101747[article]An integrated framework of global sensitivity analysis and calibration for spatially explicit agent-based models / Jeon-Young Kang in Transactions in GIS, vol 26 n° 1 (February 2022)
![]()
[article]
Titre : An integrated framework of global sensitivity analysis and calibration for spatially explicit agent-based models Type de document : Article/Communication Auteurs : Jeon-Young Kang, Auteur ; Alexander Michels, Auteur ; Andrew Crooks, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 100 - 128 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse de sensibilité
[Termes IGN] analyse de variance
[Termes IGN] épidémie
[Termes IGN] étalonnage de modèle
[Termes IGN] maladie virale
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] Miami
[Termes IGN] modèle de simulation
[Termes IGN] modèle orienté agent
[Termes IGN] WebSIGRésumé : (auteur) Calibration of agent-based models (ABMs) is a major challenge due to the complex nature of the systems being modeled, the heterogeneous nature of geographical regions, the varying effects of model inputs on the outputs, and computational intensity. Nevertheless, ABMs need to be carefully tuned to achieve the desirable goal of simulating spatiotemporal phenomena of interest, and a well-calibrated model is expected to achieve an improved understanding of the phenomena. To address some of the above challenges, this article proposes an integrated framework of global sensitivity analysis (GSA) and calibration, called GSA-CAL. Specifically, variance-based GSA is applied to identify input parameters with less influence on differences between simulated outputs and observations. By dropping these less influential input parameters in the calibration process, this research reduces the computational intensity of calibration. Since GSA requires many simulation runs, due to ABMs' stochasticity, we leverage the high-performance computing power provided by the advanced cyberinfrastructure. A spatially explicit ABM of influenza transmission is used as the case study to demonstrate the utility of the framework. Leveraging GSA, we were able to exclude less influential parameters in the model calibration process and demonstrate the importance of revising local settings for an epidemic pattern in an outbreak. Numéro de notice : A2022-176 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12837 Date de publication en ligne : 03/09/2021 En ligne : https://doi.org/10.1111/tgis.12837 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99832
in Transactions in GIS > vol 26 n° 1 (February 2022) . - pp 100 - 128[article]Novel model for predicting individuals’ movements in dynamic regions of interest / Xiaoqi Shen in GIScience and remote sensing, vol 59 n° 1 (2022)
![]()
[article]
Titre : Novel model for predicting individuals’ movements in dynamic regions of interest Type de document : Article/Communication Auteurs : Xiaoqi Shen, Auteur ; Wenzhong Shi, Auteur ; Pengfei Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 250 - 271 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] chaîne de Markov
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données spatiotemporelles
[Termes IGN] épidémie
[Termes IGN] extraction de données
[Termes IGN] migration humaine
[Termes IGN] mobilité territoriale
[Termes IGN] modèle de simulation
[Termes IGN] réseau social
[Termes IGN] zone d'activité économique
[Termes IGN] zone d'intérêtRésumé : (auteur) The increasing amount of geotagged social media data provides a possible resource for location prediction. However, existing location prediction methods rarely incorporate temporal changes in mobility patterns, which could lead to unreliable predictions. In particular, human mobility patterns have changed greatly in the COVID-19 era. We propose a novel model to predict individuals’ movements in dynamic regions of interest (ROIs), taking into account changes in activity areas and movement regularity. To address changes in the activity areas, we design a new updating strategy that can ensure the realistic extraction of an individual’s ROIs. Then, we develop an integration model for changes in the movement regularity based on two newly proposed prediction methods that consider both rapid and slow changes. The proposed integration model is evaluated based on five real-world social media datasets; three Weibo datasets related to COVID-19 collected in three Chinese cities, one Twitter dataset collected in New York and one dense GPS dataset. The results demonstrate that the proposed model can achieve better performances than state-of-the-art models, especially when mobility patterns change greatly. Combined with related pandemic data, this study will benefit pandemic prevention and control. Numéro de notice : A2022-131 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15481603.2022.2026637 Date de publication en ligne : 13/01/2022 En ligne : https://doi.org/10.1080/15481603.2022.2026637 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99719
in GIScience and remote sensing > vol 59 n° 1 (2022) . - pp 250 - 271[article]Possibilities for assessment and geovisualization of spatial and temporal water quality data using a webGIS application / Daniel Balla in ISPRS International journal of geo-information, vol 11 n° 2 (February 2022)
PermalinkTree mortality caused by Diplodia shoot blight on Pinus sylvestris and other mediterranean pines / Maria Caballol in Forest ecology and management, vol 505 (1 February 2022)
PermalinkVariations of urban NO2 pollution during the COVID-19 outbreak and post-epidemic era in China: A synthesis of remote sensing and In situ measurements / Chunhui Zhao in Remote sensing, vol 14 n° 2 (January-2 2022)
PermalinkUnderstanding and predicting the spatio-temporal spread of COVID-19 via integrating diffusive graph embedding and compartmental models / Tong Zhang in Transactions in GIS, vol 25 n° 6 (December 2021)
PermalinkMask R-CNN-based building extraction from VHR satellite data in operational humanitarian action: An example related to Covid-19 response in Khartoum, Sudan / Dirk Tiede in Transactions in GIS, Vol 25 n° 3 (June 2021)
PermalinkEmotional cartography as a window into children's well-being: Visualizing the felt geographies of place / Andrew Steger in Emotion, Space and Society, vol 39 (May 2021)
PermalinkPermalinkPermalinkNEAT approach for testing and validation of geospatial network agent-based model processes: case study of influenza spread / Taylor Anderson in International journal of geographical information science IJGIS, vol 34 n° 9 (September 2020)
PermalinkIntegration of spatialization and individualization: the future of epidemic modelling for communicable diseases / Meifang Li in Annals of GIS, vol 26 n° 3 (July 2020)
Permalink