Descripteur


Etendre la recherche sur niveau(x) vers le bas
Impact of the third frequency GNSS pseudorange and carrier phase observations on rapid PPP convergences / Jiang Guo in GPS solutions, vol 25 n° 2 (April 2021)
![]()
[article]
Titre : Impact of the third frequency GNSS pseudorange and carrier phase observations on rapid PPP convergences Type de document : Article/Communication Auteurs : Jiang Guo, Auteur ; Jianghui Geng, Auteur ; Chen Wang, Auteur Année de publication : 2021 Article en page(s) : 12 p. Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] bruit (théorie du signal)
[Termes descripteurs IGN] fréquence multiple
[Termes descripteurs IGN] ligne de base
[Termes descripteurs IGN] mesurage de pseudo-distance
[Termes descripteurs IGN] modèle fonctionnel
[Termes descripteurs IGN] modèle stochastique
[Termes descripteurs IGN] phase
[Termes descripteurs IGN] positionnement ponctuel précis
[Termes descripteurs IGN] résolution d'ambiguïté
[Termes descripteurs IGN] signal BeiDou
[Termes descripteurs IGN] signal Galileo
[Termes descripteurs IGN] signal GNSS
[Termes descripteurs IGN] temps de convergenceRésumé : (Auteur) New GNSS signals have significantly augmented positioning service and promoted algorithmic innovations such as rapid PPP convergence. With the emerging of multifrequency signals, it becomes essential to thoroughly explore the contribution of third frequency pseudorange and carrier phase toward PPP. In this study, we research the role of the third frequency observations on accelerating PPP convergence, commencing from both stochastic and functional models. We first constructed the stochastic model depending on the observation noise and then introduced two uncombined functional models with respect to different inter-frequency bias (IFB) estimation strategies. The double-differenced residuals based on a zero baseline were used to evaluate the signal noises, which were 0.09, 0.07, 0.11, 0.01 and 0.09 m for Galileo E1/E5a/E5b/E5/E6 pseudorange and 0.24, 0.31 and 0.05 m for BeiDou B1/B2/B3. Besides, carrier phase observations E5a/E5/E6/B1I/B3I shared a comparable signal noise of 0.002 m, while the signal noises of E1/E5b/B2I were 0.003 m. Both BeiDou-2/Galileo and Galileo-only float PPP were implemented based on the dataset collected from 25 stations, spanning 30 days. Triple-frequency Galileo PPP achieved convergence successfully in 19.9 min if observations were weighted according to observation precision, showing a comparable performance of dual-frequency PPP. Meanwhile, the convergence time of triple-frequency float PPP was further shortened to 19.2 min when satellite pair IFBs were eliminated by estimating a second satellite clock. While the improvement of triple-frequency float PPP was marginal, triple-frequency PPP-AR using signals E1/E5a/E6 shortened the initialization time of the dual-frequency counterpart by 38%. Moreover, the performance of triple-frequency PPP-AR kept almost unchanged after we excluded the third frequency pseudorange observations. We thus suggest that the contribution of the third frequency to PPP mainly rests on ambiguity resolution, favored by the additional carrier phase observations. Numéro de notice : A2021-090 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-01079-7 date de publication en ligne : 10/01/2021 En ligne : https://doi.org/10.1007/s10291-020-01079-7 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96875
in GPS solutions > vol 25 n° 2 (April 2021) . - 12 p.[article]Geographically and temporally neural network weighted regression for modeling spatiotemporal non-stationary relationships / Sensen Wu in International journal of geographical information science IJGIS, vol 35 n° 3 (March 2021)
[article]
Titre : Geographically and temporally neural network weighted regression for modeling spatiotemporal non-stationary relationships Type de document : Article/Communication Auteurs : Sensen Wu, Auteur ; Zhongyi Wang, Auteur ; Zhenhong Du, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 582 - 608 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] classification par réseau neuronal
[Termes descripteurs IGN] espace-temps
[Termes descripteurs IGN] estimation par noyau
[Termes descripteurs IGN] littoral
[Termes descripteurs IGN] modélisation environnementale
[Termes descripteurs IGN] raisonnement spatiotemporel
[Termes descripteurs IGN] régression géographiquement pondérée
[Termes descripteurs IGN] régression linéaireRésumé : (auteur) Geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR) are classic methods for estimating non-stationary relationships. Although these methods have been widely used in geographical modeling and spatiotemporal analysis, they face challenges in adequately expressing space-time proximity and constructing a kernel with optimal weights. This probably results in an insufficient estimation of spatiotemporal non-stationarity. To address complex non-linear interactions between time and space, a spatiotemporal proximity neural network (STPNN) is proposed in this paper to accurately generate space-time distance. A geographically and temporally neural network weighted regression (GTNNWR) model that extends geographically neural network weighted regression (GNNWR) with the proposed STPNN is then developed to effectively model spatiotemporal non-stationary relationships. To examine its performance, we conducted two case studies of simulated datasets and environmental modeling in coastal areas of Zhejiang, China. The GTNNWR model was fully evaluated by comparing with ordinary linear regression (OLR), GWR, GNNWR, and GTWR models. The results demonstrated that GTNNWR not only achieved the best fitting and prediction performance but also exactly quantified spatiotemporal non-stationary relationships. Further, GTNNWR has the potential to handle complex spatiotemporal non-stationarity in various geographical processes and environmental phenomena. Numéro de notice : A2021-167 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97102
in International journal of geographical information science IJGIS > vol 35 n° 3 (March 2021) . - pp 582 - 608[article]Integrity investigation of global ionospheric TEC maps for high-precision positioning / Jiaojiao Zhao in Journal of geodesy, vol 95 n° 3 (March 2021)
![]()
[article]
Titre : Integrity investigation of global ionospheric TEC maps for high-precision positioning Type de document : Article/Communication Auteurs : Jiaojiao Zhao, Auteur ; Manuel Hernández-Pajares, Auteur ; Ningbo Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 35 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] carte ionosphérique mondiale
[Termes descripteurs IGN] erreur moyenne quadratique
[Termes descripteurs IGN] International GNSS Service
[Termes descripteurs IGN] modèle ionosphérique
[Termes descripteurs IGN] modèle stochastique
[Termes descripteurs IGN] positionnement ponctuel précis
[Termes descripteurs IGN] tempête magnétique
[Termes descripteurs IGN] teneur totale en électronsRésumé : (auteur) Aside from the ionospheric total electron content (TEC) information, root-mean-square (RMS) maps are also provided as the standard deviations of the corresponding TEC errors in global ionospheric maps (GIMs). As the RMS maps are commonly used as the accuracy indicator of GIMs to optimize the stochastic model of precise point positioning algorithms, it is of crucial importance to investigate the reliability of RMS maps involved in GIMs of different Ionospheric Associated Analysis Centers (IAACs) of the International GNSS Service (IGS), i.e., the integrity of GIMs. We indirectly analyzed the reliability of RMS maps by comparing the actual error of the differential STEC (dSTEC) with the RMS of the dSTEC derived from the RMS maps. With this method, the integrity of seven rapid IGS GIMs (UQRG, CORG, JPRG, WHRG, EHRG, EMRG, and IGRG) and six final GIMs (UPCG, CODG, JPLG, WHUG, ESAG and IGSG) was examined under the maximum and minimum solar activity conditions as well as the geomagnetic storm period. The results reveal that the reliability of the RMS maps is significantly different for the GIMs from different IAACs. Among these GIMs, the values in the RMS maps of UQRG are large, which can be used as ionospheric protection level, while the RMS values in EHRG and ESAG are significantly lower than the realistic RMS. The rapid and final GIMs from CODE, JPL and WHU provide quite reasonable RMS maps. The bounding performance of RMS maps can be influenced by the location of the stations, while the influence of solar activity and the geomagnetic storm is not obvious. Numéro de notice : A2021-220 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-021-01487-8 date de publication en ligne : 22/02/2021 En ligne : https://doi.org/10.1007/s00190-021-01487-8 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97188
in Journal of geodesy > vol 95 n° 3 (March 2021) . - n° 35[article]An anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds / Fei Su in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
![]()
[article]
Titre : An anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds Type de document : Article/Communication Auteurs : Fei Su, Auteur ; Haihong Zhu, Auteur ; Taoyi Chen, Auteur Année de publication : 2021 Article en page(s) : pp 114 - 131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] adjacence
[Termes descripteurs IGN] appariement de graphes
[Termes descripteurs IGN] arc
[Termes descripteurs IGN] bloc d'ancrage
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] jeu de données localisées
[Termes descripteurs IGN] méthode du maximum de vraisemblance (estimation)
[Termes descripteurs IGN] noeud
[Termes descripteurs IGN] objet 3D
[Termes descripteurs IGN] orientation
[Termes descripteurs IGN] positionnement en intérieur
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) Most of the existing 3D indoor object classification methods have shown impressive achievements on the assumption that all objects are oriented in the upward direction with respect to the ground. To release this assumption, great effort has been made to handle arbitrarily oriented objects in terrestrial laser scanning (TLS) point clouds. As one of the most promising solutions, anchor-based graphs can be used to classify freely oriented objects. However, this approach suffers from missing anchor detection since valid detection relies heavily on the completeness of an anchor’s point clouds and is sensitive to missing data. This paper presents an anchor-based graph method to detect and classify arbitrarily oriented indoor objects. The anchors of each object are extracted by the structurally adjacent relationship among parts instead of the parts’ geometric metrics. In the case of adjacency, an anchor can be correctly extracted even with missing parts since the adjacency between an anchor and other parts is retained irrespective of the area extent of the considered parts. The best graph matching is achieved by finding the optimal corresponding node-pairs in a super-graph with fully connecting nodes based on maximum likelihood. The performances of the proposed method are evaluated with three indicators (object precision, object recall and object F1-score) in seven datasets. The experimental tests demonstrate the effectiveness of dealing with TLS point clouds, RGBD point clouds and Panorama RGBD point clouds, resulting in performance scores of approximately 0.8 for object precision and recall and over 0.9 for chair precision and table recall. Numéro de notice : A2021-087 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.007 date de publication en ligne : 29/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96852
in ISPRS Journal of photogrammetry and remote sensing > Vol 172 (February 2021) . - pp 114 - 131[article]A practical method for calculating reliable integer float estimator in GNSS precise positioning / Xianwen Yu in Survey review, Vol 53 n° 377 (February 2021)
![]()
[article]
Titre : A practical method for calculating reliable integer float estimator in GNSS precise positioning Type de document : Article/Communication Auteurs : Xianwen Yu, Auteur ; Siqi Xia, Auteur ; Wang Gao, Auteur Année de publication : 2021 Article en page(s) : pp 97 - 107 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] estimateur
[Termes descripteurs IGN] matrice
[Termes descripteurs IGN] positionnement par GNSS
[Termes descripteurs IGN] précision du positionnement
[Termes descripteurs IGN] résolution d'ambiguïté
[Termes descripteurs IGN] varianceRésumé : (auteur) To overcome the problem that a fixed estimator is contaminated by a system error for the ambiguity be misjudged in the GNSS precise positioning, a reliable integer float estimator is recommended. Accordingly, the method for determining a finite number of integer vectors based on a given reliability probability is proposed, the formula for calculating the variance matrix of the recommended estimator is derived, and the judgment method of the estimator’s availability is proposed. The detailed process and the effect of the method are also demonstrated using examples to facilitate user application. Numéro de notice : A2021-193 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2020.1718268 date de publication en ligne : 29/01/2020 En ligne : https://doi.org/10.1080/00396265.2020.1718268 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97127
in Survey review > Vol 53 n° 377 (February 2021) . - pp 97 - 107[article]Stochastic model reliability in GNSS baseline solution / Aviram Borko in Journal of geodesy, vol 95 n° 2 (February 2021)
PermalinkStudy of systematic bias in measuring surface deformation with SAR interferometry / Homa Ansari in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkAleatoric uncertainty estimation for dense stereo matching via CNN-based cost volume analysis / Max Mehltretter in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkGPS + Galileo + QZSS + BDS tightly combined single-epoch single-frequency RTK positioning / Shaolin Zhu in Survey review, vol 53 n°376 (January 2021)
PermalinkA framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data / Minkyung Chung in Remote sensing, vol 12 n° 22 (December 2020)
PermalinkLarge-scale stochastic flood hazard analysis applied to the Po River / A. Curran in Natural Hazards, vol 104 n° 3 (December 2020)
PermalinkSemi-supervised PolSAR image classification based on improved tri-training with a minimum spanning tree / Shuang Wang in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkLandslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan, Korea / Sunmin Lee in Geocarto international, vol 35 n° 15 ([01/11/2020])
PermalinkSoil erosion assessment using RUSLE model and its validation by FR probability model / Amiya Gayen in Geocarto international, vol 35 n° 15 ([01/11/2020])
PermalinkUnfolding spatial-temporal patterns of taxi trip based on an improved network kernel density estimation / Boxi Shen in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
Permalink