Descripteur
Documents disponibles dans cette catégorie (439)



Etendre la recherche sur niveau(x) vers le bas
Measuring spatial nonstationary effects of POI-based mixed use on urban vibrancy using Bayesian spatially varying coefficients model / Zensheng Wang in International journal of geographical information science IJGIS, vol 37 n° 2 (February 2023)
![]()
[article]
Titre : Measuring spatial nonstationary effects of POI-based mixed use on urban vibrancy using Bayesian spatially varying coefficients model Type de document : Article/Communication Auteurs : Zensheng Wang, Auteur ; Feidong Lu, Auteur ; Zhaohui Liu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 339 - 359 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] approche hiérarchique
[Termes IGN] classification bayesienne
[Termes IGN] dynamique spatiale
[Termes IGN] estimation bayesienne
[Termes IGN] hétérogénéité spatiale
[Termes IGN] modèle de simulation
[Termes IGN] planification urbaine
[Termes IGN] point d'intérêt
[Termes IGN] Shenzhen
[Termes IGN] téléphonie mobile
[Termes IGN] urbanisation
[Termes IGN] utilisation du solRésumé : (auteur) Understanding the relationship between mixed land use and urban vibrancy is vital in advanced urban planning applications. This study presents a Bayesian spatially varying coefficient (SVC) model to explore the spatially nonstationary relationship between mixed land use and urban vibrancy after controlling for other factors. We first use the convolutional conditional autoregressive prior to accommodate the ecological bias resulting from unobserved confounders. Then we develop our approach in the case of a single predictor to allow the spatially varying coefficient process. We further introduce a type of the Bayesian SVC model that considers the stratified heterogeneity of the outcome, allowing the coefficients to simultaneously vary at the local and subregion level. We illustrate the proposed model by conducting a case study in Shenzhen using mobile phone data, an officially registered point-of-interest (POI) dataset, and several supplementary datasets. The model evaluation results show that including spatially unstructured and structured component combinations can improve the model's fitness and predictive ability; additionally, considering spatial stratified heterogeneity can further enhance the model's performance. Our findings provide an alternative for measuring the variable local-scale association between mixed-use and urban vibrancy and offer new insights that broaden the fields of environmental science and spatial statistics. Numéro de notice : A2023-057 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2117363 En ligne : https://doi.org/10.1080/13658816.2022.2117363 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102393
in International journal of geographical information science IJGIS > vol 37 n° 2 (February 2023) . - pp 339 - 359[article]Bayesian hyperspectral image super-resolution in the presence of spectral variability / Fei Ye in IEEE Transactions on geoscience and remote sensing, vol 60 n° 12 (December 2022)
![]()
[article]
Titre : Bayesian hyperspectral image super-resolution in the presence of spectral variability Type de document : Article/Communication Auteurs : Fei Ye, Auteur ; Zebin Wu, Auteur ; Yang Xu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5545613 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] processus gaussien
[Termes IGN] réflectance
[Termes IGN] signature spectrale
[Termes IGN] théorème de BayesRésumé : (auteur) Synthesizing a high-resolution (HR) hyperspectral image (HSI) by merging a low-resolution (LR) HSI with a corresponding HR multispectral image (MSI) has become a promising HSI super-resolution scheme. Most existing HSI-MSI fusion methods are effective to some extent, while several challenges remain. First, the spectral response of a given material exhibits considerable variability due to different acquisition times and conditions, however, variations in spectral signatures are often neglected. Second, a majority of off-the-shelf methods require predefined degradation operators, which can be unavailable in practice. To tackle the above issues, we introduce a novel fusion approach with a Bayesian framework. Specifically, we regard the up-sampled LR-HSI as the low-frequency component of the underlying HR-HSI. We characterize the texture features of high- and low-frequency components, respectively, which can enlarge modeling capacity and bypass the absence of degradation operators. Furthermore, we depict the relative smoothness of reflectance spectra with the Gaussian process. Extensive experiments on synthesized and real datasets illustrate the superiority of the proposed strategy in terms of fusion performance and robustness to spectral variability. Numéro de notice : A2022-908 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3228313 Date de publication en ligne : 12/12/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3228313 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102339
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 12 (December 2022) . - n° 5545613[article]A data-driven framework to manage uncertainty due to limited transferability in urban growth models / Jingyan Yu in Computers, Environment and Urban Systems, vol 98 (December 2022)
![]()
[article]
Titre : A data-driven framework to manage uncertainty due to limited transferability in urban growth models Type de document : Article/Communication Auteurs : Jingyan Yu, Auteur ; Alex Hagen-Zanker, Auteur ; Naratip Santitissadeekorn, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101892 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] automate cellulaire
[Termes IGN] changement d'utilisation du sol
[Termes IGN] croissance urbaine
[Termes IGN] estimation bayesienne
[Termes IGN] étalement urbain
[Termes IGN] Europe (géographie politique)
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] modèle stochastique
[Termes IGN] simulation dynamiqueRésumé : (auteur) The processes of urban growth vary in space and time. There is a lack of model transferability, which means that models estimated for a particular study area and period are not necessarily applicable for other periods and areas. This problem is often addressed through scenario analysis, where scenarios reflect different plausible model realisations based typically on expert consultation. This study proposes a novel framework for data-driven scenario development which, consists of three components - (i) multi-area, multi-period calibration, (ii) growth mode clustering, and (iii) cross-application. The framework finds clusters of parameters, referred to as growth modes: within the clusters, parameters represent similar spatial development trajectories; between the clusters, parameters represent substantially different spatial development trajectories. The framework is tested with a stochastic dynamic urban growth model across European functional urban areas over multiple time periods, estimated using a Bayesian method on an open global urban settlement dataset covering the period 1975–2014.
The results confirm a lack of transferability, with reduced confidence in the model over the validation period, compared to the calibration period. Over the calibration period the probability that parameters estimated specifically for an area outperforms those for other areas is 96%. However, over an independent validation period, this probability drops to 72%. Four growth modes are identified along a gradient from compact to dispersed spatial developments. For most training areas, spatial development in the later period is better characterized by one of the four modes than their own historical parameters. The results provide strong support for using identified parameter clusters as a tool for data-driven and quantitative scenario development, to reflect part of the uncertainty of future spatial development trajectories.Numéro de notice : A2022-799 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101892 Date de publication en ligne : 08/10/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101892 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101966
in Computers, Environment and Urban Systems > vol 98 (December 2022) . - n° 101892[article]A novel entropy-based method to quantify forest canopy structural complexity from multiplatform lidar point clouds / Xiaoqiang Liu in Remote sensing of environment, vol 282 (December 2022)
![]()
[article]
Titre : A novel entropy-based method to quantify forest canopy structural complexity from multiplatform lidar point clouds Type de document : Article/Communication Auteurs : Xiaoqiang Liu, Auteur ; Qin Ma, Auteur ; Xiaoyong wu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113280 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] Chine
[Termes IGN] couvert forestier
[Termes IGN] densité des points
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] échantillonnage
[Termes IGN] écosystème forestier
[Termes IGN] entropie
[Termes IGN] estimation par noyau
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] semis de pointsRésumé : (auteur) Forest canopy structural complexity (CSC) describes the three-dimensional (3D) arrangement of canopy elements, and has become an emergent forest attribute mediating forest ecosystem functioning along with species diversity. Light detection and ranging (lidar), especially the emerging near-surface lidar platforms (e.g., terrestrial laser scanning/TLS, backpack laser scanning/BLS, unmanned aerial vehicle laser scanning/ULS), can depict 3D canopy information with high efficiency and accuracy, providing an ideal data source for forest CSC quantification. However, current existing lidar-based CSC quantification indices may share common limitations of getting saturated in structurally complex forest stands and not fully capturing within-canopy structural variations. In this study, we introduced the concept of entropy into forest CSC quantification, and proposed a new forest CSC index, namely canopy entropy (CE). Two major bottlenecks were addressed in the CE calculation procedure, including (1) using a Mann-Kendall (MK) test-based resampling strategy to address the issue of incongruent sampling chances of canopy elements at different locations from different lidar systems, and (2) using a kernel density estimation (KDE)-based method to reduce its dependence on point density. The effectiveness and generality of CE were evaluated by simulating TLS and ULS point clouds from nine forest stands and collecting TLS, BLS, and ULS point clouds from 110 field plots distributed in five forest sites, covering a large variety of forest types and forest CSC conditions. The results showed that CE was an effective forest CSC quantification index that successfully captured CSC variations caused by both tree density and the number of vertical canopy layers. It had significant positive correlations with four widely used CSC indices (i.e., canopy cover, foliage height diversity, canopy top rugosity, and fractal dimension; R2: 0.32 to 0.67), but outperformed them by overcoming their common limitations. CE estimates from multiplatform lidar point clouds agreed well with each other (R2 ≥ 0.70, RMSE ≤0.10), indicating it has generality in cross-platform forest CSC quantification practices. We believe the proposed CE index has great potential to help us unravel the correlations among forest CSC, species diversity, and forest ecosystem functions, and therefore improve our understanding on forest ecosystem processes. Numéro de notice : A2022-795 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113280 Date de publication en ligne : 26/09/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113280 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101930
in Remote sensing of environment > vol 282 (December 2022) . - n° 113280[article]An estimation method to reduce complete and partial nonresponse bias in forest inventory / James A. Westfall in European Journal of Forest Research, vol 141 n° 5 (October 2022)
![]()
[article]
Titre : An estimation method to reduce complete and partial nonresponse bias in forest inventory Type de document : Article/Communication Auteurs : James A. Westfall, Auteur Année de publication : 2022 Article en page(s) : pp 901 - 907 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] enquête
[Termes IGN] erreur systématique
[Termes IGN] estimateur
[Termes IGN] estimation statistique
[Termes IGN] Etats-Unis
[Termes IGN] incertitude des données
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle de simulation
[Termes IGN] placette d'échantillonnage
[Termes IGN] post-stratification de données
[Termes IGN] propriété foncière
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Survey practitioners commonly encounter various types of nonresponse and strive to implement methods that mitigate any resulting bias when reporting results. In national forest inventories (NFI), complete or partial nonresponse usually results from hazardous conditions or lack of plot access permission. While many factors may be related to nonresponse, the two primary factors in the NFI of the USA are public/private land ownership and office/field plot status. To ameliorate potential nonresponse bias, these factors should be accounted for in the estimation process. An estimation method is presented where response homogeneity groups (RHGs) account for differential nonresponse rates between forest/nonforest plots. In a post-stratified estimation context, ratio-to-size estimators are used in RHGs within post-strata to avoid potential bias in variance estimates arising from partial plot nonresponse. Combining RHGs within post-strata requires a complex variance estimator that includes four sources of uncertainty. Testing of the estimation method on a synthetic population showed the approach is essentially unbiased. Application to NFI data from 10 states in the USA consistently showed the RHG method produced state-level estimates of forestland area that were 0.1%–3.6% larger than the current post-stratified estimation procedure. It is suggested that these differences are indicative of the nonresponse bias present when plots having differential nonresponse rates are not accounted for. Numéro de notice : A2022-759 Affiliation des auteurs : non IGN Thématique : FORET/MATHEMATIQUE Nature : Article DOI : 10.1007/s10342-022-01480-6 Date de publication en ligne : 14/07/2022 En ligne : https://doi.org/10.1007/s10342-022-01480-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101770
in European Journal of Forest Research > vol 141 n° 5 (October 2022) . - pp 901 - 907[article]Assessing logging residues availability for energy production by using forest management plans data and geographic information system (GIS) / Luca Nonini in European Journal of Forest Research, vol 141 n° 5 (October 2022)
PermalinkA comparative assessment of modeling groundwater vulnerability using DRASTIC method from GIS and a novel classification method using machine learning classifiers / Qasim Khan in Geocarto international, vol 37 n° 20 ([20/09/2022])
PermalinkAssessing road accidents in spatial context via statistical and non-statistical approaches to detect road accident hotspot using GIS / Yegane Khosravi in Geodetski vestnik, vol 66 n° 3 (September - November 2022)
PermalinkDeep image deblurring: A survey / Kaihao Zhang in International journal of computer vision, vol 130 n° 9 (September 2022)
PermalinkA general model for creating robust choropleth maps / Wangshu Mu in Computers, Environment and Urban Systems, vol 96 (September 2022)
PermalinkImpact of offsets on assessing the low-frequency stochastic properties of geodetic time series / Kevin Gobron in Journal of geodesy, vol 96 n° 7 (July 2022)
PermalinkExploring the spatial disparity of home-dwelling time patterns in the USA during the COVID-19 pandemic via Bayesian inference / Xiao Huang in Transactions in GIS, vol 26 n° 4 (June 2022)
PermalinkGIS-based assessment of long-term traffic accidents using spatiotemporal and empirical Bayes analysis in Turkey / Saffet Erdoğan in Applied geomatics, vol 14 n° 2 (June 2022)
PermalinkUncertainty of biomass stocks in Spanish forests: a comprehensive comparison of allometric equations / Aitor Ameztegui in European Journal of Forest Research, vol 141 n° 3 (June 2022)
PermalinkMapping and prediction of soil organic carbon by an advanced geostatistical technique using remote sensing and terrain data / Santanu Malik in Geocarto international, vol 37 n° 8 ([01/05/2022])
Permalink