Descripteur



Etendre la recherche sur niveau(x) vers le bas
An anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds / Fei Su in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
![]()
[article]
Titre : An anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds Type de document : Article/Communication Auteurs : Fei Su, Auteur ; Haihong Zhu, Auteur ; Taoyi Chen, Auteur Année de publication : 2021 Article en page(s) : pp 114 - 131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] adjacence
[Termes descripteurs IGN] appariement de graphes
[Termes descripteurs IGN] balayage laser
[Termes descripteurs IGN] bloc d'ancrage
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] jeu de données
[Termes descripteurs IGN] méthode du maximum de vraisemblance (estimation)
[Termes descripteurs IGN] noeud
[Termes descripteurs IGN] objet 3D
[Termes descripteurs IGN] orientation
[Termes descripteurs IGN] positionnement en intérieur
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) Most of the existing 3D indoor object classification methods have shown impressive achievements on the assumption that all objects are oriented in the upward direction with respect to the ground. To release this assumption, great effort has been made to handle arbitrarily oriented objects in terrestrial laser scanning (TLS) point clouds. As one of the most promising solutions, anchor-based graphs can be used to classify freely oriented objects. However, this approach suffers from missing anchor detection since valid detection relies heavily on the completeness of an anchor’s point clouds and is sensitive to missing data. This paper presents an anchor-based graph method to detect and classify arbitrarily oriented indoor objects. The anchors of each object are extracted by the structurally adjacent relationship among parts instead of the parts’ geometric metrics. In the case of adjacency, an anchor can be correctly extracted even with missing parts since the adjacency between an anchor and other parts is retained irrespective of the area extent of the considered parts. The best graph matching is achieved by finding the optimal corresponding node-pairs in a super-graph with fully connecting nodes based on maximum likelihood. The performances of the proposed method are evaluated with three indicators (object precision, object recall and object F1-score) in seven datasets. The experimental tests demonstrate the effectiveness of dealing with TLS point clouds, RGBD point clouds and Panorama RGBD point clouds, resulting in performance scores of approximately 0.8 for object precision and recall and over 0.9 for chair precision and table recall. Numéro de notice : A2021-087 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.007 date de publication en ligne : 29/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96852
in ISPRS Journal of photogrammetry and remote sensing > Vol 172 (February 2021) . - pp 114 - 131[article]A framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data / Minkyung Chung in Remote sensing, vol 12 n° 22 (December 2020)
![]()
[article]
Titre : A framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data Type de document : Article/Communication Auteurs : Minkyung Chung, Auteur ; Youkyung Han, Auteur ; Yongil Kim, Auteur Année de publication : 2020 Article en page(s) : n° 3835 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] aide à la décision
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] Corée du sud
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] dommage
[Termes descripteurs IGN] estimation par noyau
[Termes descripteurs IGN] flou
[Termes descripteurs IGN] gestion des risques
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] image Geoeye
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image PlanetScope
[Termes descripteurs IGN] incendie de forêt
[Termes descripteurs IGN] Normalized Difference Vegetation IndexRésumé : (auteur) The application of remote sensing techniques for disaster management often requires rapid damage assessment to support decision-making for post-treatment activities. As the on-demand acquisition of pre-event very high-resolution (VHR) images is typically limited, PlanetScope (PS) offers daily images of global coverage, thereby providing favorable opportunities to obtain high-resolution pre-event images. In this study, we propose an unsupervised change detection framework that uses post-fire VHR images with pre-fire PS data to facilitate the assessment of wildfire damage. To minimize the time and cost of human intervention, the entire process was executed in an unsupervised manner from image selection to change detection. First, to select clear pre-fire PS images, a blur kernel was adopted for the blind and automatic evaluation of local image quality. Subsequently, pseudo-training data were automatically generated from contextual features regardless of the statistical distribution of the data, whereas spectral and textural features were employed in the change detection procedure to fully exploit the properties of different features. The proposed method was validated in a case study of the 2019 Gangwon wildfire in South Korea, using post-fire GeoEye-1 (GE-1) and pre-fire PS images. The experimental results verified the effectiveness of the proposed change detection method, achieving an overall accuracy of over 99% with low false alarm rate (FAR), which is comparable to the accuracy level of the supervised approach. The proposed unsupervised framework accomplished efficient wildfire damage assessment without any prior information by utilizing the multiple features from multi-sensor bi-temporal images. Numéro de notice : A2020-793 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs12223835 date de publication en ligne : 22/11/2020 En ligne : https://doi.org/10.3390/rs12223835 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96570
in Remote sensing > vol 12 n° 22 (December 2020) . - n° 3835[article]Unfolding spatial-temporal patterns of taxi trip based on an improved network kernel density estimation / Boxi Shen in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
![]()
[article]
Titre : Unfolding spatial-temporal patterns of taxi trip based on an improved network kernel density estimation Type de document : Article/Communication Auteurs : Boxi Shen, Auteur ; Xiang Xu, Auteur ; Jun Li, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 683 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] circulation urbaine
[Termes descripteurs IGN] estimation par noyau
[Termes descripteurs IGN] Map Matching
[Termes descripteurs IGN] mobilité urbaine
[Termes descripteurs IGN] modèle conceptuel de données localisées
[Termes descripteurs IGN] modèle conceptuel de flux
[Termes descripteurs IGN] Shenzhen
[Termes descripteurs IGN] taxi
[Termes descripteurs IGN] trafic routier
[Termes descripteurs IGN] trajetRésumé : (auteur) Taxi mobility data plays an important role in understanding urban mobility in the context of urban traffic. Specifically, the taxi is an important part of urban transportation, and taxi trips reflect human behaviors and mobility patterns, allowing us to identify the spatial variety of such patterns. Although taxi trips are generated in the form of network flows, previous works have rarely considered network flow patterns in the analysis of taxi mobility data; Instead, most works focused on point patterns or trip patterns, which may provide an incomplete snapshot. In this work, we propose a novel approach to explore the spatial-temporal patterns of taxi travel by considering point, trip and network flow patterns in a simultaneous fashion. Within this approach, an improved network kernel density estimation (imNKDE) method is first developed to estimate the density of taxi trip pick-up and drop-off points (ODs). Next, the correlation between taxi service activities (i.e., ODs) and land-use is examined. Then, the trip patterns of taxi trips and its corresponding routes are analyzed to reveal the correlation between trips and road structure. Finally, network flow analysis for taxi trip among areas of varying land-use types at different times are performed to discover spatial and temporal taxi trip ODs from a new perspective. A case study in the city of Shenzhen, China, is thoroughly presented and discussed for illustrative purposes. Numéro de notice : A2020-730 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9110683 date de publication en ligne : 15/11/2020 En ligne : https://doi.org/10.3390/ijgi9110683 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96337
in ISPRS International journal of geo-information > vol 9 n° 11 (November 2020) . - n° 683[article]Object-based classification of mixed forest types in Mongolia / E. Nyamjargal in Geocarto international, vol 35 n° 14 ([15/10/2020])
![]()
[article]
Titre : Object-based classification of mixed forest types in Mongolia Type de document : Article/Communication Auteurs : E. Nyamjargal, Auteur ; D. Amarsaikhan, Auteur ; A. Munkh-Erdene, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1615 - 1626 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] approche hiérarchique
[Termes descripteurs IGN] approche pixel
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] classification bayesienne
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] forêt
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image multitemporelle
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] méthode du maximum de vraisemblance (estimation)
[Termes descripteurs IGN] Mongolie
[Termes descripteurs IGN] peuplement mélangéRésumé : (auteur) The aim of this study is to produce updated forest map of the Bogdkhan Mountain, Mongolia using multitemporal Sentinel-2A images. The target area has highly mixed forest types and it is very difficult to differentiate the fuzzy boundaries among different forest types. To extract the forest class information, an object-based classification technique is applied and a rule-base to separate the mixed classes is developed. The rule-base uses a hierarchy of rules describing different conditions under which the actual classification has to be performed. To compare the result of the developed method with a result of a pixel-based approach, a Bayesian maximum likelihood classification is applied. The final result indicates overall accuracy of 90.87% for the object-based classification, while for the pixel-based approach it is 79.89%. Overall, the research indicates that the object-based method that uses a thoroughly defined segmentation and a well-constructed rule-base can significantly improve the classification of mixed forest types and produce of a reliable forest map. Numéro de notice : A2020-619 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1583775 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1583775 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95995
in Geocarto international > vol 35 n° 14 [15/10/2020] . - pp 1615 - 1626[article]Predictive land value modelling in Guatemala City using a geostatistical approach and Space Syntax / Jose Morales in International journal of geographical information science IJGIS, vol 34 n° 7 (July 2020)
![]()
[article]
Titre : Predictive land value modelling in Guatemala City using a geostatistical approach and Space Syntax Type de document : Article/Communication Auteurs : Jose Morales, Auteur ; Alfred Stein, Auteur ; Johannes Flacke, Auteur ; Jaap Zevenbergen, Auteur Année de publication : 2020 Article en page(s) : pp 1451 - 1474 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de la valeur
[Termes descripteurs IGN] analyse syntaxique
[Termes descripteurs IGN] cartographie statistique
[Termes descripteurs IGN] estimation quantitative
[Termes descripteurs IGN] évaluation foncière
[Termes descripteurs IGN] géostatistique
[Termes descripteurs IGN] Guatemala
[Termes descripteurs IGN] krigeage
[Termes descripteurs IGN] méthode du maximum de vraisemblance (estimation)
[Termes descripteurs IGN] modèle conceptuel de données localisées
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] système d'information foncièreRésumé : (auteur) Spatial information of land values is fundamental for planners and policy makers. Individual appraisals are costly, explaining the need for predictive modelling. Recent work has investigated using Space Syntax to analyse urban access and explain land values. However, the spatial dependence of urban land markets has not been addressed in such studies. Further, the selection of meaningful variables is commonly conducted under non-spatialized modelling conditions. The objective of this paper is to construct a land value map using a geostatistical approach using Space Syntax and a spatialized variable selection. The methodology is applied in Guatemala City. We used an existing dataset of residential land value appraisals and accessibility metrics. Regression-kriging was used to conduct variable selection and derive a model for spatial prediction. The prediction accuracy is compared with a multivariate regression. The results show that a spatialized variable selection yields a more parsimonious model with higher prediction accuracy. New insights were found on how Space Syntax explains land value variability when also modelling the spatial dependence. Space Syntax can contribute with relevant spatialized information for predictive land value modelling purposes. Finally, the spatial modelling framework facilitates the production of spatial information of land values that is relevant for planning practice. Numéro de notice : A2020-306 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1725014 date de publication en ligne : 11/02/2020 En ligne : https://doi.org/10.1080/13658816.2020.1725014 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95148
in International journal of geographical information science IJGIS > vol 34 n° 7 (July 2020) . - pp 1451 - 1474[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020071 SL Revue Centre de documentation Revues en salle Disponible Determining the road traffic accident hotspots using GIS-based temporal-spatial statistical analytic techniques in Hanoi, Vietnam / Khanh Giang Le in Geo-spatial Information Science, vol 23 n° 2 (June 2020)
PermalinkOptimal lowest astronomical tide estimation using maximum likelihood estimator with multiple ocean models hybridization / Mohammed El-Diasty in ISPRS International journal of geo-information, vol 9 n° 5 (May 2020)
PermalinkPedestrian network generation based on crowdsourced tracking data / Xue Yang in International journal of geographical information science IJGIS, vol 34 n° 5 (May 2020)
PermalinkUsing GIS for disease mapping and clustering in Jeddah, Saudi Arabia / Abdulkader Murad in ISPRS International journal of geo-information, vol 9 n° 5 (May 2020)
PermalinkBayesian inversion of convolved hidden Markov models with applications in reservoir prediction / Torstein Fjeldstad in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
PermalinkInteractive display of surnames distributions in historic and contemporary Great Britain / Justin Van Dijk in Journal of maps, vol 16 n° 1 ([02/01/2020])
PermalinkPermalinkPermalinkTransferability and calibration of airborne laser scanning based mixed-effects models to estimate the attributes of sawlog-sized Scots pines / Lauri Korhonen in Silva fennica, vol 53 n° 3 (2019)
PermalinkDecomposition of geodetic time series: A combined simulated annealing algorithm and Kalman filter approach / Feng Ming in Advances in space research, vol 64 n°5 (1 September 2019)
Permalink