Descripteur
Termes IGN > mathématiques > statistique mathématique > régression
régressionSynonyme(s)analyse de régressionVoir aussi |
Documents disponibles dans cette catégorie (786)


Etendre la recherche sur niveau(x) vers le bas
A global long-term, high-resolution satellite radar backscatter data record (1992–2022+): merging C-band ERS/ASCAT and Ku-band QSCAT / Shengli Tao in Earth System Science Data, vol 15 n° 4 (2023)
![]()
[article]
Titre : A global long-term, high-resolution satellite radar backscatter data record (1992–2022+): merging C-band ERS/ASCAT and Ku-band QSCAT Type de document : Article/Communication Auteurs : Shengli Tao, Auteur ; Zurui Ao, Auteur ; Jean-Pierre Wigneron, Auteur ; Sassan Saatchi, Auteur ; Philippe Ciais, Auteur ; Jérôme Chave, Auteur ; Thuy Le Toan, Auteur ; Pierre-Louis Frison , Auteur ; et al., Auteur
Année de publication : 2023 Article en page(s) : pp 1577 - 1596 Note générale : bibliographie
Data description paperLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande C
[Termes IGN] bande Ku
[Termes IGN] fusion de données
[Termes IGN] image radar moirée
[Termes IGN] régression
[Termes IGN] série temporelleRésumé : (auteur) Satellite radar backscatter contains unique information on land surface moisture, vegetation features, and surface roughness and has thus been used in a range of Earth science disciplines. However, there is no single global radar data set that has a relatively long wavelength and a decades-long time span. We here provide the first long-term (since 1992), high-resolution (∼8.9 km instead of the commonly used ∼25 km resolution) monthly satellite radar backscatter data set over global land areas, called the long-term, high-resolution scatterometer (LHScat) data set, by fusing signals from the European Remote Sensing satellite (ERS; 1992–2001; C-band; 5.3 GHz), Quick Scatterometer (QSCAT, 1999–2009; Ku-band; 13.4 GHz), and the Advanced SCATterometer (ASCAT; since 2007; C-band; 5.255 GHz). The 6-year data gap between C-band ERS and ASCAT was filled by modelling a substitute C-band signal during 1999–2009 from Ku-band QSCAT signals and climatic information. To this end, we first rescaled the signals from different sensors, pixel by pixel. We then corrected the monthly signal differences between the C-band and the scaled Ku-band signals by modelling the signal differences from climatic variables (i.e. monthly precipitation, skin temperature, and snow depth) using decision tree regression. The quality of the merged radar signal was assessed by computing the Pearson r, root mean square error (RMSE), and relative RMSE (rRMSE) between the C-band and the corrected Ku-band signals in the overlapping years (1999–2001 and 2007–2009). We obtained high Pearson r values and low RMSE values at both the regional (r≥0.92, RMSE ≤ 0.11 dB, and rRMSE ≤ 0.38) and pixel levels (median r across pixels ≥ 0.64, median RMSE ≤ 0.34 dB, and median rRMSE ≤ 0.88), suggesting high accuracy for the data-merging procedure. The merged radar signals were then validated against the European Space Agency (ESA) ERS-2 data, which provide observations for a subset of global pixels until 2011, even after the failure of on-board gyroscopes in 2001. We found highly concordant monthly dynamics between the merged radar signals and the ESA ERS-2 signals, with regional Pearson r values ranging from 0.79 to 0.98. These results showed that our merged radar data have a consistent C-band signal dynamic. The LHScat data set (https://doi.org/10.6084/m9.figshare.20407857; Tao et al., 2023) is expected to advance our understanding of the long-term changes in, e.g., global vegetation and soil moisture with a high spatial resolution. The data set will be updated on a regular basis to include the latest images acquired by ASCAT and to include even higher spatial and temporal resolutions. Numéro de notice : A2023-097 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/essd-15-1577-2023 Date de publication en ligne : 12/04/2023 En ligne : https://doi.org/10.5194/essd-15-1577-2023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103215
in Earth System Science Data > vol 15 n° 4 (2023) . - pp 1577 - 1596[article]Impacts of forest management on stand and landscape-level microclimate heterogeneity of European beech forests / Joscha H. Menge in Landscape ecology, vol 38 n° 4 (April 2023)
![]()
[article]
Titre : Impacts of forest management on stand and landscape-level microclimate heterogeneity of European beech forests Type de document : Article/Communication Auteurs : Joscha H. Menge, Auteur ; Paul Magdon, Auteur ; Stephan Wöllauer, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 903 - 917 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse comparative
[Termes IGN] données lidar
[Termes IGN] éclaircie (sylviculture)
[Termes IGN] écosystème forestier
[Termes IGN] Fagus (genre)
[Termes IGN] forêt équienne
[Termes IGN] forêt inéquienne
[Termes IGN] gestion forestière
[Termes IGN] hêtraie
[Termes IGN] microclimat
[Termes IGN] régression multiple
[Termes IGN] semis de points
[Termes IGN] température de l'air
[Termes IGN] ThuringeRésumé : (auteur) Context: Forest microclimate influences biodiversity and plays a crucial role in regulating forest ecosystem functions. It is modified by forest management as a result of changes in forest structure due to tree harvesting and thinning.
Objectives: Here, we investigate the impacts of even-aged and uneven-aged forest management on stand- and landscape-level heterogeneity of forest microclimates, in comparison with unmanaged, old-growth European beech forest.
Methods: We combined stand structural and topographical indices derived from airborne laser scanning with climate observations from 23 meteorological stations at permanent forest plots within the Hainich region, Germany. Based on a multiple linear regression model, we spatially interpolated the diurnal temperature range (DTR) as an indicator of forest microclimate across a 4338 ha section of the forest with 50 m spatial resolution. Microclimate heterogeneity was measured as α-, β-, and γ-diversity of thermal niches (i.e. DTR classes).
Results: Even-aged forests showed a higher γ-diversity of microclimates than uneven-aged and unmanaged forests. This was mainly due to a higher β-diversity resulting from the spatial coexistence of different forest developmental stages within the landscape. The greater structural complexity at the stand-level in uneven-aged stands did not increase α-diversity of microclimates. Predicted DTR was significantly lower and spatially more homogenous in unmanaged forest compared to both types of managed forest.
Conclusion: If forest management aims at creating a wide range of habitats with different microclimates within a landscape, spatially co-existing types of differently managed and unmanaged forests should be considered, instead of focusing on a specific type of management, or setting aside forest reserves only.Numéro de notice : A2023-224 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1007/s10980-023-01596-z Date de publication en ligne : 30/01/2023 En ligne : https://doi.org/10.1007/s10980-023-01596-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103175
in Landscape ecology > vol 38 n° 4 (April 2023) . - pp 903 - 917[article]Determination of Helmert transformation parameters for continuous GNSS networks: a case study of the Géoazur GNSS network / Dinh Trong Tran in Geo-spatial Information Science, vol 26 n° 1 (March 2023)
![]()
[article]
Titre : Determination of Helmert transformation parameters for continuous GNSS networks: a case study of the Géoazur GNSS network Type de document : Article/Communication Auteurs : Dinh Trong Tran, Auteur ; Jean-Mathieu Nocquet , Auteur ; Ngoc Dung Luong, Auteur ; et al., Auteur
Année de publication : 2023 Article en page(s) : pp 125 - 138 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes de référence et réseaux
[Termes IGN] données GNSS
[Termes IGN] International Terrestrial Reference Frame
[Termes IGN] méthode des moindres carrés
[Termes IGN] transformation de coordonnées
[Termes IGN] transformation de Helmert
[Termes IGN] valeur aberranteRésumé : (auteur) In this paper, we propose an approach to determine seven parameters of the Helmert transformation by transforming the coordinates of a continuous GNSS network from the World Geodetic System 1984 (WGS84) to the International Terrestrial Reference Frame. This includes (1) converting the coordinates of common points from the global coordinate system to the local coordinate system, (2) identifying and eliminating outliers by the Dikin estimator, and (3) estimating seven parameters of the Helmert transformation by least squares (LS) estimation with the “clean” data (i.e. outliers removed). Herein, the local coordinate system provides a platform to separate points’ horizontal and vertical components. Then, the Dikin estimator identifies and eliminates outliers in the horizontal or vertical component separately. It is significant because common points in a continuous GNSS network may contain outliers. The proposed approach is tested with the Géoazur GNSS network with the results showing that the Dikin estimator detects outliers at 6 out of 18 common points, among which three points are found with outliers in the vertical component only. Thus, instead of eliminating all coordinate components of these six common points, we only eliminate all coordinate components of three common points and only the vertical component of another three common points. Finally, the classical LS estimation is applied to “clean” data to estimate seven parameters of the Helmert transformation with a significant accuracy improvement. The Dikin estimator’s results are compared to those of other robust estimators of Huber and Theil-Sen, which shows that the Dikin estimator performs better. Furthermore, the weighted total least-squares estimation is implemented to assess the accuracy of the LS estimation with the same data. The inter-comparison of the seven estimated parameters and their standard deviations shows a small difference at a few per million levels (E-6). Numéro de notice : A2023-208 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1080/10095020.2022.2138569 Date de publication en ligne : 15/11/2022 En ligne : https://doi.org/10.1080/10095020.2022.2138569 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103135
in Geo-spatial Information Science > vol 26 n° 1 (March 2023) . - pp 125 - 138[article]A comparative assessment of the statistical methods based on urban population density estimation / Merve Yılmaz in Geocarto international, vol 38 n° 1 ([01/01/2023])
![]()
[article]
Titre : A comparative assessment of the statistical methods based on urban population density estimation Type de document : Article/Communication Auteurs : Merve Yılmaz, Auteur Année de publication : 2023 Article en page(s) : n° 2152494 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] densité de population
[Termes IGN] planification urbaine
[Termes IGN] population urbaine
[Termes IGN] régression géographiquement pondérée
[Termes IGN] régression multiple
[Termes IGN] TurquieRésumé : (auteur) Population density is important spatial information for addressing the use and access to land resources in cities under the Sustainable Development Goals. This is because the spatial data support appropriate spatial policies at the spatial scale and predicts how much land will be consumed in the future. The study aims to compare and evaluate the regression tools in the context of estimating the population density difference. The three analysis tools used are Random Forest-Based Classification, Multiple Linear Regression, and Geographically Weighted Regression. The sampling area covers cities around Türkiye. Comparative results showed that the two most important descriptive variables in the Random Forest-Based Classification model are the density difference of the new developed area and the connectivity. The three main explanatory variables of the Multiple Linear Regression model are centrality, vehicle ownership, and accessibility. The results of the Multiple Linear Regression model (a non-spatial model) and the Geographically Weighted Regression model (a spatial model), were found to be quite similar. The importance of accessibility and connectivity is more evident in the Multiple Linear Regression model when the Random Forest-Based Classification model highlights the density values in the new development areas. Numéro de notice : A2023-055 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2022.2152494 Date de publication en ligne : 28/12/2022 En ligne : https://doi.org/10.1080/10106049.2022.2152494 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102388
in Geocarto international > vol 38 n° 1 [01/01/2023] . - n° 2152494[article]Rapid mapping of seismic intensity assessment using ground motion data calculated from early aftershocks selected by GIS spatial analysis / Huaiqun Zhao in Geomatics, Natural Hazards and Risk, vol 14 n° 1 (2023)
![]()
[article]
Titre : Rapid mapping of seismic intensity assessment using ground motion data calculated from early aftershocks selected by GIS spatial analysis Type de document : Article/Communication Auteurs : Huaiqun Zhao, Auteur ; Yijiao Jia, Auteur ; Wenkai Chen, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 1 - 21 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] cartographie thématique
[Termes IGN] Chine
[Termes IGN] distribution spatiale
[Termes IGN] dommage
[Termes IGN] régression
[Termes IGN] sismologie
[Termes IGN] zone sinistrée
[Termes IGN] zone tamponRésumé : (auteur) Following a major earthquake, disaster information services must deliver accurate damage assessment results during the emergency ‘black box’ phase when data is scarce. Seismic intensity maps contain crucial information for determining the damage in the affected area. For earthquakes with Mw between 5.5 and 7, this study proposes using GIS analysis to mine aftershock events in early aftershock sequences that are closely related to the mainshock fault, and then using these events to generate seismic intensity assessment maps. Regression curves were first obtained using a nonparametric method (rLowess) to analyse the geographical coordinates of early aftershocks. Then, a buffer of 1 or 1.5 km radius was made for the curve, and the aftershocks in the buffer were used to calculate the predicted peak ground velocity (PGV) values over a specific km-grid range. Finally, rapid mapping of seismic intensity was assessed based on the intensity scale. This straightforward and repeatable method employs seismic station data obtained shortly after the mainshock. The assessed seismic intensity accurately reflects the location and extent of the hardest hit areas and can be cross-referenced with geophysical results to accurately assess the damage in the affected areas. Numéro de notice : A2023-035 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/POSITIONNEMENT Nature : Article DOI : 10.1080/19475705.2022.2160663 Date de publication en ligne : 02/01/2023 En ligne : https://doi.org/10.1080/19475705.2022.2160663 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102304
in Geomatics, Natural Hazards and Risk > vol 14 n° 1 (2023) . - pp 1 - 21[article]Interactive effects of abiotic factors and biotic agents on Scots pine dieback: A multivariate modeling approach in southeast France / Jean Lemaire in Forest ecology and management, vol 526 (December-15 2022)
PermalinkAbove ground biomass estimation from UAV high resolution RGB images and LiDAR data in a pine forest in Southern Italy / Mauro Maesano in iForest, biogeosciences and forestry, vol 15 n° 6 (December 2022)
PermalinkIntegration of geospatial technologies with multiple regression model for urban land use land cover change analysis and its impact on land surface temperature in Jimma City, southwestern Ethiopia / Mitiku Badasa Moisa in Applied geomatics, vol 14 n° 4 (December 2022)
PermalinkSea surface temperature prediction model for the Black Sea by employing time-series satellite data: a machine learning approach / Hakan Oktay Aydınlı in Applied geomatics, vol 14 n° 4 (December 2022)
PermalinkUrban wetland fragmentation and ecosystem service assessment using integrated machine learning algorithm and spatial landscape analysis / Das Subhasis in Geocarto international, vol 37 n° 25 ([01/12/2022])
PermalinkGeographically convolutional neural network weighted regression: a method for modeling spatially non-stationary relationships based on a global spatial proximity grid / Zhen Dai in International journal of geographical information science IJGIS, vol 36 n° 11 (November 2022)
PermalinkHuman mobility and COVID-19 transmission: a systematic review and future directions / Mengxi Zhang in Annals of GIS, vol 28 n° 4 (November 2022)
PermalinkImproving accuracy of local geoid model using machine learning approaches and residuals of GPS/levelling geoid height / Mosbeh R. Kaloop in Survey review, vol 54 n° 387 (November 2022)
PermalinkMachine learning models applied to a GNSS sensor network for automated bridge anomaly detection / Nicolas Manzini in Journal of structural engineering, Vol 148 n° 11 (November 2022)
PermalinkDriving factors of urban sprawl in the Romanian plain. Regional and temporal modelling using logistic regression / Ines Grigorescu in Geocarto international, vol 37 n° 24 ([20/10/2022])
Permalink