Descripteur
Termes IGN > mathématiques > statistique mathématique > régression
régressionSynonyme(s)analyse de régressionVoir aussi |
Documents disponibles dans cette catégorie (789)


Etendre la recherche sur niveau(x) vers le bas
GNSS best integer equivariant estimation combining with integer least squares estimation: an integrated ambiguity resolution method with optimal integer aperture test / Liye Ma in GPS solutions, vol 26 n° 4 (October 2022)
![]()
[article]
Titre : GNSS best integer equivariant estimation combining with integer least squares estimation: an integrated ambiguity resolution method with optimal integer aperture test Type de document : Article/Communication Auteurs : Liye Ma, Auteur ; Yidong Lou, Auteur ; Liguo Lu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] méthode des moindres carrés
[Termes IGN] phase GNSS
[Termes IGN] positionnement par GNSS
[Termes IGN] précision du positionnement
[Termes IGN] résolution d'ambiguïtéRésumé : (auteur) Accurate and reliable carrier phase ambiguity resolution (AR) is the key to global navigation satellite system (GNSS) high-precision navigation and positioning applications. The integer least squares (ILS) estimation and the best integer equivariant (BIE) estimation are two widely used AR method, with the former considered to have the highest success rate and the latter to be optimal in the minimum mean squared error (MSE) sense. We analyzed three key issues of applying the BIE method in detail, including the use boundary of BIE, the number of candidates to be involved, and the weight determination among ambiguity candidates. It has been demonstrated that the BIE estimator is superior to ILS estimator from an overall perspective, but not always the best in each specific epoch. Therefore, we recommend constructing an integrated ambiguity resolution scheme that combines BIE with ILS, and we propose to adopt the optimal integer aperture (OIA) test as a criterion to distinguish the two. Moreover, a new criterion referred to the OIA test is proposed to determine the number of candidates involved in the BIE estimator. We also attempt to add the quadratic forms of baseline residuals into the weight function of BIE, aiming to reach a more accurate estimator. Finally, an integrated AR method that combines ILS with BIE and distinguished by the OIA test is proposed, named OIA-BIE. A set of real-measured vehicle data are tested to evaluate its performance, compared to least squares (LS), ILS, and the original BIE. The results show that the positioning accuracy of OIA-BIE is a little better than BIE, better than ILS, and significantly better than LS. Moreover, the average time consumption of ILS, BIE, and OIA-BIE are also evaluated, with 1.15, 14.62, and 3.71 ms, respectively, and OIA-BIE is four times more efficient than BIE. Numéro de notice : A2022-542 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-022-01285-5 Date de publication en ligne : 03/07/2022 En ligne : https://doi.org/10.1007/s10291-022-01285-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101107
in GPS solutions > vol 26 n° 4 (October 2022) . - n° 100[article]Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators / Luis Izquierdo-Horna in Computers, Environment and Urban Systems, vol 96 (September 2022)
![]()
[article]
Titre : Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators Type de document : Article/Communication Auteurs : Luis Izquierdo-Horna, Auteur ; Miker Damazo, Auteur ; Deyvis Yanayaco, Auteur Année de publication : 2022 Article en page(s) : n° 101834 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] déchet
[Termes IGN] densité de population
[Termes IGN] données socio-économiques
[Termes IGN] Pérou
[Termes IGN] régression logistique
[Termes IGN] zone urbaineRésumé : (auteur) In the last decades, the accumulation of municipal solid waste in urban areas has become a latent concern in our society due to its implications for the exposed population and the possible health and environmental issues it may cause. In this sense, this research study contributes to the timely identification of these sectors according to the anthropogenic characteristics of their residents as dictated by 10 social indicators (i.e., age, education, income, among others) sorted into three assessment categories (sociodemographic, sociocultural, and socioeconomic). Then, the data collected was processed and analyzed using two machine learning algorithms (random forest (RF) and logistic regression (LR)). The primary information that fed the machine learning model was collected through field visits and local/national reports. For this research, the Puente Piedra and Chaclacayo districts, both located in the province of Lima, Peru, were selected as case studies. Results suggest that the most relevant social indicators that help identifying these sectors are monthly income, consumption patterns, age, and household population density. The experiments showed that the RF algorithm has the best performance, since it efficiently identified 63% of the possible solid waste accumulation zones. In addition, both models were capable of determining different classes (AUC – RF = 0.65, AUC – LR = 0.71). Finally, the proposed approach is applicable and reproducible in different sectors of the national Peruvian territory. Numéro de notice : A2022-512 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101834 Date de publication en ligne : 10/06/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101834 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101052
in Computers, Environment and Urban Systems > vol 96 (September 2022) . - n° 101834[article]Mixed geographically and temporally weighted regression for spatio-temporal deformation modelling / Zhijia Yang in Survey review, vol 54 n° 385 (July 2022)
![]()
[article]
Titre : Mixed geographically and temporally weighted regression for spatio-temporal deformation modelling Type de document : Article/Communication Auteurs : Zhijia Yang, Auteur ; Wujiao Dai, Auteur ; Wenkun Yu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 290 - 300 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] barrage
[Termes IGN] déformation d'édifice
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] modèle de simulation
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] régression
[Termes IGN] régression géographiquement pondérée
[Termes IGN] surveillance d'ouvrageRésumé : (auteur) When the regression coefficient of independent variable has both global stationarity and spatio-temporal non-stationarity properties, the deformation model based on the geographically and temporally weighted regression (GTWR) will no longer be applicable. In order to resolve this problem, we propose an improved method to establish the spatio-temporal deformation model using mixed geographically and temporally weighted regression (MGTWR). In this method, both the global regression coefficient and the variable regression coefficient are selected for regression coefficient hypothesis test, and the local linear two-step estimation method is used to fit the MGTWR model. A dam deformation modelling example shows that the MGTWR model improves the average prediction accuracy by 57.6% compared to the GTWR model when the regression coefficients have both global stationarity and spatio-temporal non-stationarity properties. Numéro de notice : A2022-534 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2021.1935578 Date de publication en ligne : 10/06/2021 En ligne : https://doi.org/10.1080/00396265.2021.1935578 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101090
in Survey review > vol 54 n° 385 (July 2022) . - pp 290 - 300[article]Mapping and prediction of soil organic carbon by an advanced geostatistical technique using remote sensing and terrain data / Santanu Malik in Geocarto international, vol 37 n° 8 ([22/06/2022])
![]()
[article]
Titre : Mapping and prediction of soil organic carbon by an advanced geostatistical technique using remote sensing and terrain data Type de document : Article/Communication Auteurs : Santanu Malik, Auteur ; Tridip Bhowmik, Auteur ; Umesh Mishra, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2198 - 2214 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] carte d'occupation du sol
[Termes IGN] estimation bayesienne
[Termes IGN] géostatistique
[Termes IGN] gestion durable
[Termes IGN] Inde
[Termes IGN] krigeage
[Termes IGN] modèle de simulation
[Termes IGN] puits de carbone
[Termes IGN] régression
[Termes IGN] réseau neuronal artificiel
[Termes IGN] solRésumé : (auteur) Prediction and accurate digital soil mapping (DSM) of soil organic carbon (SOC) at a local scale is a key factor for any agro-ecological modelling. This study aims to use remote sensing and terrain derivatives to provide a reliable method for SOC prediction. An advanced geostatistical-based empirical Bayesian Kriging regression (EBKR) method was used and performance was compared with the artificial neural network (ANN) and hybrid ANN, i.e. ANN-OK (ordinary kriging) and ANN-CK (cokriging). The result showed that the hybrid ANN model performs better than ANN, whereas the EBKR method outperforms all other methods with the highest R2 of 0.936. The DSM map shows that the highest SOC concentration was found in easternmost part of the study area with grass and agricultural land. This work shows the robustness of the EBKR prediction method over other techniques. The study will also aid the policymakers in adopting sustainable land use management. Numéro de notice : A2022-505 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1815864 Date de publication en ligne : 24/09/2020 En ligne : https://doi.org/10.1080/10106049.2020.1815864 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101026
in Geocarto international > vol 37 n° 8 [22/06/2022] . - pp 2198 - 2214[article]Ajustement en bloc des données de stations totales et de récepteurs GNSS dans les études de déformation / Joël Van Cranenbroeck in XYZ, n° 171 (juin 2022)
[article]
Titre : Ajustement en bloc des données de stations totales et de récepteurs GNSS dans les études de déformation Type de document : Article/Communication Auteurs : Joël Van Cranenbroeck, Auteur ; Nicolas Van Cranenbroeck, Auteur Année de publication : 2022 Article en page(s) : pp 25 - 32 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Topographie
[Termes IGN] auscultation d'ouvrage
[Termes IGN] données GNSS
[Termes IGN] méthode des moindres carrés
[Termes IGN] modèle fonctionnel
[Termes IGN] modèle stochastique
[Termes IGN] surveillance d'ouvrage
[Termes IGN] tachéomètre électroniqueRésumé : (Auteur) En 1988, le département de la géodésie de l’Institut géographique national de Belgique décida de contribuer aux relevés topographiques des zones urbaines en proposant deux innovations originales. Les nouvelles bases de données SIG urbaines bénéficiaient à cette époque d’un grand engouement de la part des pouvoirs publics. En général, les méthodes photogrammétriques étaient plébiscitées pour leur efficacité en termes de réalisation, mais au niveau de la qualité de la restitution ainsi que de l’interprétation des objets spatiaux, on était loin des espérances. Il était donc toujours indispensable de recourir à la topographie, non seulement pour améliorer la précision de certaines zones, mais également pour la mise à jour de ces bases de données année après année. La topographie avait vu également son évolution technique s’améliorer avec les nouvelles stations totales et les systèmes de traitement des données sur base de codage des informations attributaires des points, lignes et surfaces. Numéro de notice : A2022-522 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtSansCL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101067
in XYZ > n° 171 (juin 2022) . - pp 25 - 32[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 112-2022022 SL Revue Centre de documentation Revues en salle En circulation
Exclu du prêt112-2022021 SL Revue Centre de documentation Revues en salle Disponible Analysis of structure from motion and airborne laser scanning features for the evaluation of forest structure / Alejandro Rodríguez-Vivancos in European Journal of Forest Research, vol 141 n° 3 (June 2022)
PermalinkGIS and machine learning for analysing influencing factors of bushfires using 40-year spatio-temporal bushfire data / Wanqin He in ISPRS International journal of geo-information, vol 11 n° 6 (June 2022)
PermalinkMulti-objective optimization of urban environmental system design using machine learning / Peiyuan Li in Computers, Environment and Urban Systems, vol 94 (June 2022)
PermalinkThe effect of intra-urban mobility flows on the spatial heterogeneity of social media activity: investigating the response to rainfall events / Sidgley Camargo de Andrade in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
PermalinkPermalinkAnalyzing spatio-temporal pattern of the forest fire burnt area in Uttarakhand using Sentinel-2 data / Shailja Mamgain in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-3-2022 (2022 edition)
PermalinkDeep learning for the detection of early signs for forest damage based on satellite imagery / Dennis Wittich in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
PermalinkDevelopment of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model / Han Ma in Remote sensing of environment, vol 273 (May 2022)
PermalinkLandslide susceptibility assessment considering spatial agglomeration and dispersion characteristics: A case study of Bijie City in Guizhou Province, China / Kezhen Yao in ISPRS International journal of geo-information, vol 11 n° 5 (May 2022)
PermalinkWood decay detection in Norway spruce forests based on airborne hyperspectral and ALS data / Michele Dalponte in Remote sensing, vol 14 n° 8 (April-2 2022)
Permalink