Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie politique) > Amérique (géographie politique) > Etats-Unis > New York (Etats-Unis ; état)
New York (Etats-Unis ; état) |
Documents disponibles dans cette catégorie (33)



Etendre la recherche sur niveau(x) vers le bas
Decision tree-based machine learning models for above-ground biomass estimation using multi-source remote sensing data and object-based image analysis / Haifa Tamiminia in Geocarto international, vol 37 n° inconnu ([30/01/2022])
![]()
[article]
Titre : Decision tree-based machine learning models for above-ground biomass estimation using multi-source remote sensing data and object-based image analysis Type de document : Article/Communication Auteurs : Haifa Tamiminia, Auteur ; Bahram Salehi, Auteur ; Masoud Mahdianpari, Auteur ; et al., Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse d'image orientée objet
[Termes IGN] biomasse aérienne
[Termes IGN] boosting adapté
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification pixellaire
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image Landsat
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] New York (Etats-Unis ; état)
[Termes IGN] réserve naturelleRésumé : (auteur) Forest above-ground biomass (AGB) estimation provides valuable information about the carbon cycle. Thus, the overall goal of this paper is to present an approach to enhance the accuracy of the AGB estimation. The main objectives are to: 1) investigate the performance of remote sensing data sources, including airborne light detection and ranging (LiDAR), optical, SAR, and their combination to improve the AGB predictions, 2) examine the capability of tree-based machine learning models, and 3) compare the performance of pixel-based and object-based image analysis (OBIA). To investigate the performance of machine learning models, multiple tree-based algorithms were fitted to predictors derived from airborne LiDAR data, Landsat, Sentinel-2, Sentinel-1, and PALSAR-2/PALSAR SAR data collected within New York’s Adirondack Park. Combining remote sensing data from multiple sources improved the model accuracy (RMSE: 52.14 Mg ha−1 and R2: 0.49). There was no significant difference among gradient boosting machine (GBM), random forest (RF), and extreme gradient boosting (XGBoost) models. In addition, pixel-based and object-based models were compared using the airborne LiDAR-derived AGB raster as a training/testing sample. The OBIA provided the best results with the RMSE of 33.77 Mg ha−1 and R2 of 0.81 for the combination of optical and SAR data in the GBM model. Numéro de notice : A2022-331 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/10106049.2022.2071475 Date de publication en ligne : 27/04/2022 En ligne : https://doi.org/10.1080/10106049.2022.2071475 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100607
in Geocarto international > vol 37 n° inconnu [30/01/2022][article]CIME: Context-aware geolocation of emergency-related posts / Gabriele Scalia in Geoinformatica [en ligne], vol 26 n° 1 (January 2022)
![]()
[article]
Titre : CIME: Context-aware geolocation of emergency-related posts Type de document : Article/Communication Auteurs : Gabriele Scalia, Auteur ; Chiara Francalanci, Auteur ; Barbara Pernici, Auteur Année de publication : 2022 Article en page(s) : pp 125 - 157 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] cartographie d'urgence
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] exploration de données
[Termes IGN] géolocalisation
[Termes IGN] géoréférencement
[Termes IGN] Grande-Bretagne
[Termes IGN] implémentation (informatique)
[Termes IGN] inondation
[Termes IGN] New York (Etats-Unis ; ville)
[Termes IGN] prise en compte du contexte
[Termes IGN] tempête
[Termes IGN] TwitterRésumé : (auteur) Information extracted from social media has proven to be very useful in the domain of emergency management. An important task in emergency management is rapid crisis mapping, which aims to produce timely and reliable maps of affected areas. During an emergency, the volume of emergency-related posts is typically large, but only a small fraction is relevant and help rapid mapping effectively. Furthermore, posts are not useful for mapping purposes unless they are correctly geolocated and, on average, less than 2% of posts are natively georeferenced. This paper presents an algorithm, called CIME, that aims to identify and geolocate emergency-related posts that are relevant for mapping purposes. While native geocoordinates are most often missing, many posts contain geographical references in their metadata, such as texts or links that can be used by CIME to filter and geolocate information. In addition, social media creates a social network and each post can be enhanced with indirect information from the post’s network of relationships with other posts (for example, a retweet can be associated with other geographical references which are useful to geolocate the original tweet). To exploit all this information, CIME uses the concept of context, defined as the information characterizing a post both directly (the post’s metadata) and indirectly (the post’s network of relationships). The algorithm was evaluated on a recent major emergency event demonstrating better performance with respect to the state of the art in terms of total number of geolocated posts, geolocation accuracy and relevance for rapid mapping. Numéro de notice : A2022-204 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-021-00446-x Date de publication en ligne : 28/07/2021 En ligne : https://doi.org/10.1007/s10707-021-00446-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100011
in Geoinformatica [en ligne] > vol 26 n° 1 (January 2022) . - pp 125 - 157[article]Geographical and temporal huff model calibration using taxi trajectory data / Shuhui Gong in Geoinformatica [en ligne], vol 25 n° 3 (July 2021)
![]()
[article]
Titre : Geographical and temporal huff model calibration using taxi trajectory data Type de document : Article/Communication Auteurs : Shuhui Gong, Auteur ; John Cartlidge, Auteur ; Ruibin Bai, Auteur ; Yang Yue, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 485 - 512 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] attractivité (aménagement)
[Termes IGN] étalonnage de modèle
[Termes IGN] New York (Etats-Unis ; ville)
[Termes IGN] régression des moindres carrés partiels
[Termes IGN] régression géographiquement pondérée
[Termes IGN] Shenzhen
[Termes IGN] trajectoire (véhicule non spatial)Résumé : (auteur) The Huff model is designed to estimate the probability of shopping centre patronage based on a shopping centre’s attractiveness and the cost of a customer’s travel. In this paper, we attempt to discover some general shopping trends by calibrating the Huff model in Shenzhen, China, and New York, USA, using taxi trajectory GPS data and sharing bikes GPS data. Geographical and Temporal Weighted Regression (GTWR) is used to fit the model, and calibration results are compared with Ordinary Least Squares (OLS) regression, Geographical Weighted Regression (GWR), and Temporal Weighted Regression (TWR). Results show that GTWR gives the highest performance due to significant geographical and temporal variation in the Huff model parameters of attractiveness and travel cost. To explain the geographical variation, we use residential sales’ and rental prices in Shenzhen and New York as a proxy for customers’ wealth in each region. Pearson product-moment correlation results show a medium relationship between localised sales’ and rental prices and the Huff model parameter of attractiveness: that is, customer wealth explains geographic sensitivity to shopping area attractiveness. To explain temporal variation, we use census data in both Shenzhen and New York to provide job profile distributions for each region as a proxy to estimate customers’ spare leisure time. Regression results demonstrate that there is a significant linear relationship between the length of spare time and the parameter of shopping area attractiveness. In particular, we demonstrate that wealthy customers with less spare time are more sensitive to a shopping centre’s attractiveness. We also discover customers’ sensitivities to travel distance are related to their travel mode. In particular, people riding bikes to shopping areas care much more about trip distance compared with people who take taxi. Finally, results show a divergence in behaviours between customers in New York and Shenzhen at weekends. While customers in New York prefer to shop more locally at weekends, customers in Shenzhen care less about trip distance. We provide the GTWR calibration of the Huff model as our theoretical contribution. GTWR extends the Huff model to two dimensions (time and space), so as to analyse the differences of residents’ travel behaviours in different time and locations. We also provide the discoveries of factors affecting urban travel behaviours (wealth and employment) as practical contributions that may help optimise urban transportation design. In particular, the sensitivity of residents to the attraction of shopping areas has a significant positive linear relationship with the housing price and a significant negative linear relationship with the residents’ length of spare time. Numéro de notice : A2021-973 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1007/s10707-019-00390-x Date de publication en ligne : 18/02/2020 En ligne : https://doi.org/10.1007/s10707-019-00390-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100392
in Geoinformatica [en ligne] > vol 25 n° 3 (July 2021) . - pp 485 - 512[article]Joint promotion partner recommendation systems using data from location-based social networks / Yi-Chung Chen in ISPRS International journal of geo-information, vol 10 n° 2 (February 2021)
![]()
[article]
Titre : Joint promotion partner recommendation systems using data from location-based social networks Type de document : Article/Communication Auteurs : Yi-Chung Chen, Auteur ; Hsi-Ho Huang, Auteur ; Sheng-Min Chiu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 57 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] Facebook
[Termes IGN] Foursquare
[Termes IGN] géomercatique
[Termes IGN] New York (Etats-Unis ; ville)
[Termes IGN] point d'intérêt
[Termes IGN] politique commerciale
[Termes IGN] réseau social géodépendantRésumé : (auteur) Joint promotion is a valuable business strategy that enables companies to attract more customers at lower operational cost. However, finding a suitable partner can be extremely difficult. Conventionally, one of the most common approaches is to conduct survey-based analysis; however, this method can be unreliable as well as time-consuming, considering that there are likely to be thousands of potential partners in a city. This article proposes a framework to recommend Joint Promotion Partners using location-based social networks (LBSN) data. We considered six factors in determining the suitability of a partner (customer base, association, rating and awareness, prices and star ratings, distance, and promotional strategy) and developed efficient algorithms to perform the required calculations. The effectiveness and efficiency of our algorithms were verified using the Foursquare dataset and real-life case studies. Numéro de notice : A2021-152 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10020057 Date de publication en ligne : 30/01/2021 En ligne : https://doi.org/10.3390/ijgi10020057 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97063
in ISPRS International journal of geo-information > vol 10 n° 2 (February 2021) . - n° 57[article]Modeling land use change and forest carbon stock changes in temperate forests in the United States / Lucia Fitts in Carbon Balance and Management, vol 16 ([01/02/2021])
![]()
[article]
Titre : Modeling land use change and forest carbon stock changes in temperate forests in the United States Type de document : Article/Communication Auteurs : Lucia Fitts, Auteur ; Matthew B. Russell, Auteur ; Grant M. Domke, Auteur ; Joseph F. Knight, Auteur Année de publication : 2021 Article en page(s) : n° 20 (2021) Langues : Anglais (eng) Descripteur : [Termes IGN] changement d'occupation du sol
[Termes IGN] Colorado (Etats-Unis)
[Termes IGN] forêt tempérée
[Termes IGN] Géorgie (Etats-Unis)
[Termes IGN] impact sur l'environnement
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] New York (Etats-Unis ; état)
[Termes IGN] puits de carbone
[Termes IGN] Texas (Etats-Unis)
[Termes IGN] Wisconsin (Etats-Unis)
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Background : Forests provide the largest terrestrial sink of carbon (C). However, these C stocks are threatened by forest land conversion. Land use change has global impacts and is a critical component when studying C fluxes, but it is not always fully considered in C accounting despite being a major contributor to emissions. An urgent need exists among decision-makers to identify the likelihood of forest conversion to other land uses and factors affecting C loss. To help address this issue, we conducted our research in California, Colorado, Georgia, New York, Texas, and Wisconsin. The objectives were to (1) model the probability of forest conversion and C stocks dynamics using USDA Forest Service Forest Inventory and Analysis (FIA) data and (2) create wall-to-wall maps showing estimates of the risk of areas to convert from forest to non-forest. We used two modeling approaches: a machine learning algorithm (random forest) and generalized mixed-effects models. Explanatory variables for the models included ecological attributes, topography, census data, forest disturbances, and forest conditions. Model predictions and Landsat spectral information were used to produce wall-to-wall probability maps of forest change using Google Earth Engine.
Results : During the study period (2000–2017), 3.4% of the analyzed FIA plots transitioned from forest to mixed or non-forested conditions. Results indicate that the change in land use from forests is more likely with increasing human population and housing growth rates. Furthermore, non-public forests showed a higher probability of forest change compared to public forests. Areas closer to cities and coastal areas showed a higher risk of transition to non-forests. Out of the six states analyzed, Colorado had the highest risk of conversion and the largest amount of aboveground C lost. Natural forest disturbances were not a major predictor of land use change.
Conclusions : Land use change is accelerating globally, causing a large increase in C emissions. Our results will help policy-makers prioritize forest management activities and land use planning by providing a quantitative framework that can enhance forest health and productivity. This work will also inform climate change mitigation strategies by understanding the role that land use change plays in C emissions.Numéro de notice : A2021-501 Affiliation des auteurs : non IGN Thématique : FORET/INFORMATIQUE Nature : Article Date de publication en ligne : 03/07/2021 En ligne : https://doi.org/10.1186/s13021-021-00183-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98099
in Carbon Balance and Management > vol 16 [01/02/2021] . - n° 20 (2021)[article]A spatiotemporal structural graph for characterizing land cover changes / Bin Wu in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
PermalinkLocal fuzzy geographically weighted clustering: a new method for geodemographic segmentation / George Grekousis in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
PermalinkSTME: An effective method for discovering spatiotemporal multi‐type clusters containing events with different densities / Chao Wang in Transactions in GIS, Vol 24 n° 6 (December 2020)
PermalinkA preliminary exploration of the cooling effect of tree shade in urban landscapes / Qiuyan Yu in International journal of applied Earth observation and geoinformation, vol 92 (October 2020)
PermalinkExtracting commuter-specific destination hotspots from trip destination data – comparing the boro taxi service with Citi Bike in NYC / Andreas Keler in Geo-spatial Information Science, vol 23 n° 2 (June 2020)
PermalinkA reliable traffic prediction approach for bike‐sharing system by exploiting rich information with temporal link prediction strategy / Yan Zhou in Transactions in GIS, Vol 23 n° 5 (October 2019)
PermalinkSpace, time, and situational awareness in natural hazards: a case study of Hurricane Sandy with social media data / Zheye Wang in Cartography and Geographic Information Science, Vol 46 n° 4 (July 2019)
PermalinkA methodology with a distributed algorithm for large-scale trajectory distribution prediction / QiuLei Guo in International journal of geographical information science IJGIS, Vol 33 n° 3-4 (March - April 2019)
PermalinkQuantification of airborne lidar accuracy in coastal dunes (Fire Island, New York) / William J. Schmelz in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 2 (February 2019)
PermalinkMultiview marker-free registration of forest terrestrial laser scanner data with embedded confidence metrics / David Kelbe in IEEE Transactions on geoscience and remote sensing, vol 55 n° 2 (February 2017)
Permalink