Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > extraction de traits caractéristiques > extraction de la végétation
extraction de la végétationSynonyme(s)détection de la végétation |
Documents disponibles dans cette catégorie (48)



Etendre la recherche sur niveau(x) vers le bas
The promising combination of a remote sensing approach and landscape connectivity modelling at a fine scale in urban planning / Elie Morin in Ecological indicators, vol 139 (June 2022)
![]()
[article]
Titre : The promising combination of a remote sensing approach and landscape connectivity modelling at a fine scale in urban planning Type de document : Article/Communication Auteurs : Elie Morin, Auteur ; Pierre-Alexis Herrault, Auteur ; Yvonnick Guinard, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 108930 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse d'image orientée objet
[Termes IGN] analyse du paysage
[Termes IGN] BD Topo
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte de la végétation
[Termes IGN] Chatellerault
[Termes IGN] classification orientée objet
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] connexité (topologie)
[Termes IGN] corridor biologique
[Termes IGN] extraction de la végétation
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] indicateur environnemental
[Termes IGN] milieu urbain
[Termes IGN] Niort
[Termes IGN] planification urbaine
[Termes IGN] Poitiers
[Termes IGN] segmentation d'imageRésumé : (auteur) Urban landscapes are rapid changing ecosystems with diverse urban forms that impede the movement of organisms. Therefore, designing and modelling ecological networks to identify biodiversity reservoirs and their corridors are crucial aspects of land management in terms of population persistence and survival. However, the land cover/use maps used for landscape connectivity modelling can lack information in such a highly complex environment. In this context, remote sensing approaches are gaining interest for the development of accurate land cover/use maps. We tested the efficiency of an object-based classification using open-source projects and free images to identify vegetation strata at a very fine scale and evaluated its contribution to landscape connectivity modelling. We compared different spatial and thematic resolutions from existing databases and object-based image analyses in three French cities. Our results suggested that this remote sensing approach produced reliable land cover maps to differentiate artificial areas, tree vegetation and herbaceous vegetation. Land cover maps enhanced with the remote sensing products substantially changed the structural connectivity indices, showing an improvement up to four times the proportion of herbaceous and tree vegetation. In addition, functional connectivity indices evaluated for several forest species were mainly impacted for medium dispersers in quantitative (metrics) and qualitative (corridors) estimations. Thus, the combination of this reproductible remote sensing approach and landscape connectivity modelling at a very fine scale provides new insights into the characterisation of ecological networks for conservation planning. Numéro de notice : A2022-368 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/URBANISME Nature : Article DOI : 10.1016/j.ecolind.2022.108930 Date de publication en ligne : 04/05/2022 En ligne : https://doi.org/10.1016/j.ecolind.2022.108930 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100592
in Ecological indicators > vol 139 (June 2022) . - n° 108930[article]Comparaison des images satellite et aériennes dans le domaine de la détection d’obstacles à la navigation aérienne et de leur mise à jour / Olivier de Joinville in XYZ, n° 170 (mars 2022)
[article]
Titre : Comparaison des images satellite et aériennes dans le domaine de la détection d’obstacles à la navigation aérienne et de leur mise à jour Type de document : Article/Communication Auteurs : Olivier de Joinville , Auteur ; Chloé Marcon, Auteur
Année de publication : 2022 Article en page(s) : pp 36 - 44 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] aéroport
[Termes IGN] analyse comparative
[Termes IGN] analyse diachronique
[Termes IGN] BD Topo
[Termes IGN] classification dirigée
[Termes IGN] classification orientée objet
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification pixellaire
[Termes IGN] contrôle qualité
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] extraction de la végétation
[Termes IGN] image Pléiades-HR
[Termes IGN] image Sentinel-MSI
[Termes IGN] mise à jour de base de données
[Termes IGN] modèle numérique de surface
[Termes IGN] Nice
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] orthoimage
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] QGIS
[Termes IGN] réalité de terrainRésumé : (Auteur) Le Service d’information aéronautique (SIA) est un service de la DGAC (Direction générale de l’aviation civile) qui publie et exploite des obstacles à la navigation aérienne afin de sécuriser les vols aux abords des aérodromes. L’article propose une étude comparative entre des données images aériennes (OrthoImages) et des données images satellite (Pléiades et Sentinel) dans les deux domaines suivants : détection d’obstacles (essentiellement végétation et bâtiments) ainsi que leur mise à jour. Il ressort que les images satellite, du fait de leur forte qualité radiométrique et géométrique, offrent un potentiel légèrement supérieur aux images aériennes pour le SIA. De futures études utilisant d’autres capteurs optiques, LiDAR et Radar et des moyens de contrôle plus exhaustifs, devront être menées pour confirmer cette tendance. Numéro de notice : A2022-225 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100191
in XYZ > n° 170 (mars 2022) . - pp 36 - 44[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 112-2022011 SL Revue Centre de documentation Revues en salle En circulation
Exclu du prêt112-2022012 SL Revue Centre de documentation Revues en salle Disponible Footprint size design of large-footprint full-waveform LiDAR for forest and topography applications: A theoretical study / Xuebo Yang in IEEE Transactions on geoscience and remote sensing, vol 59 n° 11 (November 2021)
![]()
[article]
Titre : Footprint size design of large-footprint full-waveform LiDAR for forest and topography applications: A theoretical study Type de document : Article/Communication Auteurs : Xuebo Yang, Auteur ; Cheng Wang, Auteur ; Xiaohuan Xi, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 9745 - 9757 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] empreinte
[Termes IGN] extraction de la végétation
[Termes IGN] forme d'onde pleine
[Termes IGN] hauteur des arbres
[Termes IGN] lidar à retour d'onde complète
[Termes IGN] onde lidar
[Termes IGN] processus gaussien
[Termes IGN] signal lidarRésumé : (auteur) LiDAR footprint, defined as the illumination area of LiDAR sensor on the ground, is the fundamental unit that the sensor collects information from. The design of footprint size crucially influences the acquired LiDAR signals. For large-footprint full-waveform LiDAR, a well-designed footprint size is indispensable to acquire accurate and complete vertical profiles of scene targets. The methods that design the footprint size are increasingly needed to satisfy various application requirements. In this study, an analytical method to designing the footprint size is proposed for forest and topography applications. It is established based on a mixture Gaussian model and the designed footprint size ensures the signals of vegetation and ground can be completely extracted. Experiment results with our method show that the footprint size is preferably in the range of 10.6–25.0 m for forest application, while it is less than 32.3 m for topography application. The intersection of the two sets satisfies both applications. Furthermore, a series of sensibility studies were performed to analyze the influence of multiple key parameters to the optimal footprint size, including the scene characteristics, instrumental configurations, and application requirements. This study provides a theoretical basis for the design of future large-footprint full-waveform laser altimeters. Numéro de notice : A2021-812 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3054324 Date de publication en ligne : 08/02/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3054324 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98885
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 11 (November 2021) . - pp 9745 - 9757[article]The delineation of tea gardens from high resolution digital orthoimages using mean-shift and supervised machine learning methods / Akhtar Jamil in Geocarto international, vol 36 n° 7 ([15/04/2021])
![]()
[article]
Titre : The delineation of tea gardens from high resolution digital orthoimages using mean-shift and supervised machine learning methods Type de document : Article/Communication Auteurs : Akhtar Jamil, Auteur ; Bulent Bayram, Auteur Année de publication : 2021 Article en page(s) : pp 758 - 772 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de décalage moyen
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage automatique
[Termes IGN] arbre de décision
[Termes IGN] Camellia sinensis
[Termes IGN] classification dirigée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] exploitation agricole
[Termes IGN] extraction de la végétation
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] orthoimage
[Termes IGN] segmentation hiérarchique
[Termes IGN] TurquieRésumé : (Auteur) Rize district is an important tea production site in Turkey, which is known for high quality tea. Determining the temporal changes is very crucial from the viewpoint of agricultural management and protection of tea areas. In addition, delineation of tea gardens using photogrammetric evaluation techniques for a single orthoimage takes approximately 8 h of labour work, which is both costly and time-consuming process. To overcome these issues, a method is proposed for demarcation of tea gardens from high-resolution orthoimages. In this article, a hierarchical object-based segmentation using mean-shift (MS) and supervised machine learning (ML) methods are investigated for delineation of tea gardens. First, the MS algorithm was applied to partition the images into homogeneous segments (objects) and then from each segment, various spectral, spatial and textural features were extracted. Finally, four most widely used supervised ML classifiers, support vector machine (SVM), artificial neural network (ANN), random forest (RF), and decision trees (DTs), were selected for classification of objects into tea gardens and other types of trees. Photogrammetrically evaluated tea garden borders were taken as reference data to evaluate the performance of the proposed methods. The experiments showed that all selected supervised classifiers were effective for delineation of the tea gardens from high-resolution images. Numéro de notice : A2021-293 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1622597 Date de publication en ligne : 19/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1622597 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97349
in Geocarto international > vol 36 n° 7 [15/04/2021] . - pp 758 - 772[article]A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery / Lucas Prado Osco in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)
![]()
[article]
Titre : A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery Type de document : Article/Communication Auteurs : Lucas Prado Osco, Auteur ; Mauro Dos Santos de Arruda, Auteur ; Diogo Nunes Gonçalves, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1 - 17 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] carte agricole
[Termes IGN] Citrus sinensis
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] comptage
[Termes IGN] cultures
[Termes IGN] détection d'objet
[Termes IGN] extraction de la végétation
[Termes IGN] gestion durable
[Termes IGN] image captée par drone
[Termes IGN] maïs (céréale)
[Termes IGN] rendement agricoleRésumé : (auteur) Accurately mapping croplands is an important prerequisite for precision farming since it assists in field management, yield-prediction, and environmental management. Crops are sensitive to planting patterns and some have a limited capacity to compensate for gaps within a row. Optical imaging with sensors mounted on Unmanned Aerial Vehicles (UAV) is a cost-effective option for capturing images covering croplands nowadays. However, visual inspection of such images can be a challenging and biased task, specifically for detecting plants and rows on a one-step basis. Thus, developing an architecture capable of simultaneously extracting plant individually and plantation-rows from UAV-images is yet an important demand to support the management of agricultural systems. In this paper, we propose a novel deep learning method based on a Convolutional Neural Network (CNN) that simultaneously detects and geolocates plantation-rows while counting its plants considering highly-dense plantation configurations. The experimental setup was evaluated in (a) a cornfield (Zea mays L.) with different growth stages (i.e. recently planted and mature plants) and in a (b) Citrus orchard (Citrus Sinensis Pera). Both datasets characterize different plant density scenarios, in different locations, with different types of crops, and from different sensors and dates. This scheme was used to prove the robustness of the proposed approach, allowing a broader discussion of the method. A two-branch architecture was implemented in our CNN method, where the information obtained within the plantation-row is updated into the plant detection branch and retro-feed to the row branch; which are then refined by a Multi-Stage Refinement method. In the corn plantation datasets (with both growth phases – young and mature), our approach returned a mean absolute error (MAE) of 6.224 plants per image patch, a mean relative error (MRE) of 0.1038, precision and recall values of 0.856, and 0.905, respectively, and an F-measure equal to 0.876. These results were superior to the results from other deep networks (HRNet, Faster R-CNN, and RetinaNet) evaluated with the same task and dataset. For the plantation-row detection, our approach returned precision, recall, and F-measure scores of 0.913, 0.941, and 0.925, respectively. To test the robustness of our model with a different type of agriculture, we performed the same task in the citrus orchard dataset. It returned an MAE equal to 1.409 citrus-trees per patch, MRE of 0.0615, precision of 0.922, recall of 0.911, and F-measure of 0.965. For the citrus plantation-row detection, our approach resulted in precision, recall, and F-measure scores equal to 0.965, 0.970, and 0.964, respectively. The proposed method achieved state-of-the-art performance for counting and geolocating plants and plant-rows in UAV images from different types of crops. The method proposed here may be applied to future decision-making models and could contribute to the sustainable management of agricultural systems. Numéro de notice : A2021-205 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.024 Date de publication en ligne : 13/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.024 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97171
in ISPRS Journal of photogrammetry and remote sensing > vol 174 (April 2021) . - pp 1 - 17[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021041 SL Revue Centre de documentation Revues en salle Disponible 081-2021043 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2021042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Automated detection of individual Juniper tree location and forest cover changes using Google Earth Engine / Sudeera Wickramarathna in Annals of forest research, vol 64 n° 1 (2021)
PermalinkFlood mapping from radar remote sensing using automated image classification techniques / Lisa Landuyt (2021)
PermalinkLocal color and morphological image feature based vegetation identification and its application to human environment street view vegetation mapping, or how green is our county? / Istvan G. Lauko in Geo-spatial Information Science, vol 23 n° 3 (September 2020)
PermalinkIntegration of remote sensing and GIS to extract plantation rows from a drone-based image point cloud digital surface model / Nadeem Fareed in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)
PermalinkThe application of bidirectional reflectance distribution function data to recognize the spatial heterogeneity of mixed pixels in vegetation remote sensing: a simulation study / Yanan Yan in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)
PermalinkUnsupervised extraction of urban features from airborne lidar data by using self-organizing maps / Alper Sen in Survey review, vol 52 n° 371 (March 2020)
PermalinkThree-dimensional photogrammetric mapping of cotton bolls in situ based on point cloud segmentation and clustering / Shangpeng Sun in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
PermalinkCombining GF-2 and RapidEye satellite data for mapping mangrove species using ensemble machine-learning methods / Liheng Peng in International Journal of Remote Sensing IJRS, vol 41 n° 3 (15 - 22 janvier 2020)
PermalinkAnalyse automatique du couvert végétal pour la gestion du risque végétation en milieu ferroviaire à partir d'imagerie aérienne / Hélène Rouillon (2020)
PermalinkFusion of 3D point clouds and hyperspectral data for the extraction of geometric and radiometric features of trees / Eduardo Alejandro Tusa Jumbo (2020)
Permalink