Descripteur
Termes IGN > environnement > pollution > pollution des sols
pollution des solsSynonyme(s)pollution du solVoir aussi |
Documents disponibles dans cette catégorie (40)



Etendre la recherche sur niveau(x) vers le bas
Extracting event-related information from a corpus regarding soil industrial pollution / Chuanming Dong (2021)
![]()
Titre : Extracting event-related information from a corpus regarding soil industrial pollution Type de document : Article/Communication Auteurs : Chuanming Dong , Auteur ; Philippe Gambette, Auteur ; Catherine Dominguès
, Auteur
Editeur : Setúbal [Portugal] : Science and Technology Publications - Scitepress Année de publication : 2021 Projets : 1-Pas de projet / Conférence : KDIR 2021, 13th International Conference on Knowledge Discovery and Information Retrieval 25/10/2021 27/10/2021 Setubal Portugal OA Proceedings Importance : pp 217 - 224 Note générale : bibliographie
In Proceedings of the 13th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - KDIR, ISBN 978-989-758-533-3Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] apprentissage profond
[Termes IGN] corpus
[Termes IGN] découverte de connaissances
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] pollution des sols
[Termes IGN] site pollué
[Termes IGN] traitement du langage naturelRésumé : (auteur) We study the extraction and reorganization of event-related information in texts regarding industrial pollution. The object is to build a memory of polluted sites that gathers the information about industrial events from various databases and corpora. An industrial event is described through several features as the event trigger, the industrial activity, the institution, the pollutant, etc. In order to efficiently collect information from a large corpus, it is necessary to automatize the information extraction process. To this end, we manually annotated a part of a corpus about soil industrial pollution, then we used it to train information extraction models with deep learning methods. The models we trained achieve 0.76 F-score on event feature extraction. We intend to improve the models and then use them on other text resources to enrich the polluted sites memory with extracted information about industrial events. Numéro de notice : C2021-068 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5220/0010656700003064 En ligne : https://dx.doi.org/10.5220/0010656700003064 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99540 Spectral Interference of Heavy Metal Contamination on Spectral Signals of Moisture Content for Heavy Metal Contaminated Soils / Haein Shin in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
![]()
[article]
Titre : Spectral Interference of Heavy Metal Contamination on Spectral Signals of Moisture Content for Heavy Metal Contaminated Soils Type de document : Article/Communication Auteurs : Haein Shin, Auteur ; Jaehyung Yu, Auteur ; Lei Wang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 2266 - 2275 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] arsenic
[Termes IGN] bande spectrale
[Termes IGN] bruit blanc
[Termes IGN] contamination
[Termes IGN] cuivre
[Termes IGN] dégradation du signal
[Termes IGN] échantillonnage
[Termes IGN] humidité du sol
[Termes IGN] interférence
[Termes IGN] métal lourd
[Termes IGN] modèle de régression
[Termes IGN] plomb
[Termes IGN] pollution des sols
[Termes IGN] signature spectraleRésumé : (auteur) This article examined the spectral interference by heavy metal on the spectral signal of moisture content of heavy metal contaminated soils. Soil samples were collected from an abandoned mine area, and the chemical analysis revealed extremely high contamination amount of copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), and lead (Pb). The mineralogical analysis showed that the spectral signature of the heavy metal contaminated soils was manifested by secondary minerals. Water content suppressed the spectral reflectance of the soil samples but increased the absorption depths. Although a regression model can predict moisture content using the magnitude of the water absorption feature, the accuracy was much lower when the heavy metal concentration was extremely high. It indicates that geochemical reactions between the heavy metal cation and iron oxide/clay minerals may have affected the spectral responses of the contaminated soils at the water absorption bands. Our model also showed that there was a shift of the absorption features of moisture content if the heavy metal contamination level went up. Unlike normal soils, the absorption features of clay minerals and ferric iron were not able to accurately predict moisture in highly contaminated soils. Given the fact that the spectral bands selected in this article were associated with water absorption, the findings from this article may only be useful to a drone-based low-altitude remote sensing of soil moisture content. Numéro de notice : A2020-193 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2946297 Date de publication en ligne : 31/10/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2946297 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94860
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 4 (April 2020) . - pp 2266 - 2275[article]Fusion entre bases de données hétérogènes concernant la pollution des sols [diaporama] / Chuanming Dong (2020)
![]()
Titre : Fusion entre bases de données hétérogènes concernant la pollution des sols [diaporama] Type de document : Article/Communication Auteurs : Chuanming Dong , Auteur
Editeur : GdR MaDICS Année de publication : 2020 Conférence : Atelier 2020 AGEE du second symposium GdR CNRS MaDICS 06/07/2020 06/07/2020 en ligne France programme Langues : Français (fre) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] acteur
[Termes IGN] appariement de données localisées
[Termes IGN] base de données localisées
[Termes IGN] base de données thématiques
[Termes IGN] données spatiotemporelles
[Termes IGN] intégration de données
[Termes IGN] polluant
[Termes IGN] pollution des solsNuméro de notice : C2020-026 Affiliation des auteurs : UGE-LASTIG (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE Nature : Communication nature-HAL : ComSansActesPubliés-Unpublished DOI : sans En ligne : https://hal.archives-ouvertes.fr/hal-03198895/file/AGEE - Fusion entre bases de [...] Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97635 A machine learning approach to detect crude oil contamination in a real scenario using hyperspectral remote sensing / Ran Pelta in International journal of applied Earth observation and geoinformation, vol 82 (October 2019)
![]()
[article]
Titre : A machine learning approach to detect crude oil contamination in a real scenario using hyperspectral remote sensing Type de document : Article/Communication Auteurs : Ran Pelta, Auteur ; Nimrod Carmon, Auteur ; Eyal Ben-Dor, Auteur Année de publication : 2019 Article en page(s) : 15 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage dirigé
[Termes IGN] étalonnage de modèle
[Termes IGN] hydrocarbure
[Termes IGN] image aérienne
[Termes IGN] image hyperspectrale
[Termes IGN] image infrarouge
[Termes IGN] image proche infrarouge
[Termes IGN] Israël
[Termes IGN] Kappa de Cohen
[Termes IGN] pétrole
[Termes IGN] photo-interprétation
[Termes IGN] pollution des sols
[Termes IGN] réflectance du sol
[Termes IGN] spectroscopieRésumé : (auteur) One of the most ubiquitous and detrimental types of environmental contamination in the world is crude oil pollution. When released into either the aquatic or terrestrial environments, this pollution can negatively impact flora and fauna, as well as human health. Hence, a rapid and affordable spatial assessment of the pollution is favored to limit the spill’s effects. Using airborne hyperspectral remote sensing (HRS) for crude oil detection in terrestrial areas has been investigated in previous studies, which mainly relied on heavily oiled artificial samples. These studies and others based their methodologies on the premise that the spectral features of petroleum hydrocarbon (PHC) are clearly observable, which might not be true in all cases. In this study, we aimed at assessing the true potential of using HRS for terrestrial oil spill mapping in a real disaster site in southern Israel, where laboratory and controlled conditions do not apply. Using the AISA SPECIM Fenix1 K sensor, we collected airborne image of the study site and analyzed the data with advanced data mining techniques. Various challenges and limitations arose from the airborne HRS image being taken two and a half years after the crude oil had been released into the environment and exposed to the surface. Here, no spectral features of PHC were detectable in the spectrum, preventing the use of PHC indices and spectral methods developed by others. Nevertheless, by using standardization techniques, vicarious band selection, dimension reduction, multivariate calibration, and supervised machine-learning, we were able to successfully distinguish between contaminated pixels from non-contaminated ones. Classification accuracy metrics of overall accuracy, sensitivity, specificity, and Kappa yielded good results of 0.95, 0.95, 0.95 and 0.9, respectively, for cross-validation, and 0.93, 0.91, 0.94 and 0.85, for the validation dataset. Classified image and test scenes also showed strong agreement with an orthophoto image taken several days after the disaster, when the pollution was clearly visible. Thus, we conclude that HRS technology can detect PHC traces in an oil spill site, even under the most challenging conditions. Numéro de notice : A2019-475 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2019.101901 Date de publication en ligne : 22/06/2019 En ligne : https://doi.org/10.1016/j.jag.2019.101901 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93636
in International journal of applied Earth observation and geoinformation > vol 82 (October 2019) . - 15 p.[article]Hyperspectral analysis of soil polluted with four types of hydrocarbons / Laura A. Reséndez-Hernández in Geocarto international, vol 34 n° 9 ([15/06/2019])
![]()
[article]
Titre : Hyperspectral analysis of soil polluted with four types of hydrocarbons Type de document : Article/Communication Auteurs : Laura A. Reséndez-Hernández, Auteur ; Daniel Prudencio-Csapek, Auteur ; Diego Fabian Lozano Garcia, Auteur Année de publication : 2019 Article en page(s) : pp 925 - 942 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de mélange spectral d’extrémités multiples
[Termes IGN] analyse spectrale
[Termes IGN] classification Spectral angle mapper
[Termes IGN] hydrocarbure
[Termes IGN] pétrole
[Termes IGN] pollution des sols
[Termes IGN] réflectance spectrale
[Termes IGN] spectroradiomètreRésumé : (auteur) In this study, a high spectral resolution GER-2600 spectroradiometer was used to obtain the spectral data of soil samples that were polluted with four different types of petroleum–hydrocarbons products: Diesel, Gasoline, Crude Oil and Fuel Oil. The polluted soil samples were prepared in the laboratory at five concentrations levels: unpolluted soil, 2500, 100,000, 250,000 ppm and pure pollutant. Spectral data were pre-processed and then analysed with various approaches: Principal Components Transformation and ANOVA, Spectral Angle Mapper (SAM), Hydrocarbon Index (HI) and Spectral Mixture Analysis (SMA). The results showed that it was possible to determine the different spectral response between clean soil and some of the polluted soils: crude oil at concentrations higher than 100,000 ppm were the easiest to recognize; while samples polluted with gasoline at concentrations below 250,000 ppm were the most difficult to distinguish from non-polluted samples. Numéro de notice : A2019-516 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1451921 Date de publication en ligne : 28/03/2019 En ligne : https://doi.org/10.1080/10106049.2018.1451921 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93870
in Geocarto international > vol 34 n° 9 [15/06/2019] . - pp 925 - 942[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2019091 SL Revue Centre de documentation Généralités Disponible Exploitation of hyperspectral data for assessing vegetation health under exposure to petroleum hydrocarbons / Guillaume Lassalle (2019)
PermalinkVers un observatoire agro-environnemental des territoires : Un système décisionnel multi-échelle pour le bassin de la Charente / Françoise Vernier in Revue internationale de géomatique, vol 27 n° 3 (juillet-septembre 2017)
PermalinkExceedance of critical loads and of critical limits impacts tree nutrition across Europe / Peter Waldner in Annals of Forest Science [en ligne], vol 72 n° 7 (october 2015)
PermalinkSols et environnement, chiffres clés, édition 2015 / CGDD Commissariat Général au Développement Durable (2015)
PermalinkPermalinkSuivi actualisé d'indicateurs agricoles parcellaires sur des zones de protection de captages d'eau potable / V. Dardare in Géomatique expert, n° 76 (01/09/2010)
PermalinkL'environnement en France, édition 2010, 1. Rapport / CGDD Commissariat Général au Développement Durable (2010)
PermalinkPermalinkLe phytomanagement, protection et dépollution des eaux et des sols : un état des connaissances et des pratiques en France / François Charnet in Revue forestière française, vol 61 n° 5 (septembre - octobre 2009)
PermalinkLa phytoremédiation, ou la bonne santé des sols par les plantes / François Charnet in Forêt entreprise, n° 188 (2009/5)
Permalink