Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie politique) > Europe (géographie politique) > Union Européenne > Finlande
FinlandeVoir aussi |
Documents disponibles dans cette catégorie (203)



Etendre la recherche sur niveau(x) vers le bas
Harvested area did not increase abruptly-how advancements in satellite-based mapping led to erroneous conclusions / Johannes Breidenbach in Annals of Forest Science [en ligne], vol 79 n° 1 (December 2022)
![]()
[article]
Titre : Harvested area did not increase abruptly-how advancements in satellite-based mapping led to erroneous conclusions Type de document : Article/Communication Auteurs : Johannes Breidenbach, Auteur ; David Ellison, Auteur ; Hans Petersson, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] changement climatique
[Termes IGN] données spatiotemporelles
[Termes IGN] Finlande
[Termes IGN] image à haute résolution
[Termes IGN] image Landsat
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] précision de l'estimation
[Termes IGN] récolte de bois
[Termes IGN] Suède
[Termes IGN] surface forestière
[Termes IGN] Union EuropéenneRésumé : (Auteur) Using satellite-based maps, Ceccherini et al. (Nature 583:72-77, 2020) report abruptly increasing harvested area estimates in several EU countries beginning in 2015. Using more than 120,000 National Forest Inventory observations to analyze the satellite-based map, we show that it is not harvested area but the map’s ability to detect harvested areas that abruptly increases after 2015 in Finland and Sweden. Numéro de notice : A2022-068 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01120-4 Date de publication en ligne : 22/02/2022 En ligne : https://doi.org/10.1186/s13595-022-01120-4 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100013
in Annals of Forest Science [en ligne] > vol 79 n° 1 (December 2022) . - n° 2[article]Direct and automatic measurements of stem curve and volume using a high-resolution airborne laser scanning system / Eric Hyyppä in Science of remote sensing, vol 5 (June 2022)
![]()
[article]
Titre : Direct and automatic measurements of stem curve and volume using a high-resolution airborne laser scanning system Type de document : Article/Communication Auteurs : Eric Hyyppä, Auteur ; Antero Kukko, Auteur ; Harri Kaartinen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100050 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] détection d'arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier local
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle numérique de terrain
[Termes IGN] Picea abies
[Termes IGN] semis de points
[Termes IGN] volume en boisRésumé : (auteur) Today, high-quality reference tree measurements, including the position, diameter, height and volume, are cumbersome and slow to carry out, but highly needed for forest inventories based on airborne laser scanning. Mobile laser scanning technologies hold the promise for collecting reference data for forest inventories with an extremely high efficiency. Perhaps, the most efficient approach for reference data collection would be to mount a high-resolution laser scanning system on board an airborne vehicle flying at a low altitude above the forest canopy since this would allow recording reference samples of individual trees with the speed of flight. To demonstrate the potential of this technology, we mounted an in-house developed HeliALS-DW laser scanning system on board a helicopter and collected point cloud data in a boreal forest on three test sites containing a total of 1469 trees. The obtained point clouds incorporated sufficiently many high-quality stem hits for estimating the stem curves and stem volumes of individual trees since the point clouds had a relatively high point density of 2200–3800 echoes/m2, and the scanner had been tilted by 15° from the nadir to increase the possibility of recording stem hits. To automatically estimate the diameters at breast height (DBH) and stem curves of individual trees, we used algorithms designed to tolerate moderate drifts in the trajectory of the laser scanner. Furthermore, the stem volumes of individual trees were computed by using the estimated stem curves and tree heights without any allometric models. Using the proposed methods, we were able to estimate the stem curves with a root-mean-square error (RMSE) of 1.7–2.6 cm (6–9%) while detecting 42–71% of the trees. The RMSE of stem volume estimates was 0.1–0.15 m3 (12–21%). We also showed that the tree detection rate could be improved up to 87–96% for trees with a DBH exceeding 20 cm if slightly larger average errors for the stem attributes were allowed. Our results pave the way for using high-resolution airborne laser scanning for field reference data collection by conducting direct measurements of tree stems with a high efficiency. Numéro de notice : A2022-298 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.srs.2022.100050 Date de publication en ligne : 09/04/2022 En ligne : https://doi.org/10.1016/j.srs.2022.100050 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100464
in Science of remote sensing > vol 5 (June 2022) . - n° 100050[article]Comparison of neural networks and k-nearest neighbors methods in forest stand variable estimation using airborne laser data / Andras Balazs in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 4 (April 2022)
![]()
[article]
Titre : Comparison of neural networks and k-nearest neighbors methods in forest stand variable estimation using airborne laser data Type de document : Article/Communication Auteurs : Andras Balazs, Auteur ; Eero Liski, Auteur ; Sakari Tuominen, Auteur Année de publication : 2022 Article en page(s) : n° 100012 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme génétique
[Termes IGN] bois sur pied
[Termes IGN] classification barycentrique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] covariance
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Finlande
[Termes IGN] hauteur des arbres
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] peuplement forestier
[Termes IGN] réseau neuronal artificiel
[Termes IGN] semis de points
[Termes IGN] volume en boisRésumé : (auteur) In the remote sensing of forests, point cloud data from airborne laser scanning contains high-value information for predicting the volume of growing stock and the size of trees. At the same time, laser scanning data allows a very high number of potential features that can be extracted from the point cloud data for predicting the forest variables. In some methods, the features are first extracted by user-defined algorithms and the best features are selected based on supervised learning, whereas both tasks can be carried out automatically by deep learning methods typically based on deep neural networks. In this study we tested k-nearest neighbor method combined with genetic algorithm (k-NN), artificial neural network (ANN), 2-dimensional convolutional neural network (2D-CNN) and 3-dimensional CNN (3D-CNN) for estimating the following forest variables: volume of growing stock, stand mean height and mean diameter. The results indicate that there were no major differences in the accuracy of the tested methods, but the ANN and 3D-CNN generally resulted in the lowest RMSE values for the predicted forest variables and the highest R2 values between the predicted and observed forest variables. The lowest RMSE scores were 20.3% (3D-CNN), 6.4% (3D-CNN) and 11.2% (ANN) and the highest R2 results 0.90 (3D-CNN), 0.95 (3D-CNN) and 0.85 (ANN) for volume of growing stock, stand mean height and mean diameter, respectively. Covariances of all response variable combinations and all predictions methods were lower than corresponding covariances of the field observations. ANN predictions had the highest covariances for mean height vs. mean diameter and total growing stock vs. mean diameter combinations and 3D-CNN for mean height vs. total growing stock. CNNs have distinct theoretical advantage over the other methods in complex recognition or classification tasks, but the utilization of their full potential may possibly require higher point density clouds than applied here. Thus, the relatively low density of the point clouds data may have been a contributing factor to the somewhat inconclusive ranking of the methods in this study. The input data and computer codes are available at: https://github.com/balazsan/ALS_NNs. Numéro de notice : A2022-265 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ophoto.2022.100012 Date de publication en ligne : 12/03/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100263
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 4 (April 2022) . - n° 100012[article]Assessing the dependencies of scots pine (Pinus sylvestris L.) structural characteristics and internal wood property variation / Ville Kankare in Forests, vol 13 n° 3 (March 2022)
![]()
[article]
Titre : Assessing the dependencies of scots pine (Pinus sylvestris L.) structural characteristics and internal wood property variation Type de document : Article/Communication Auteurs : Ville Kankare, Auteur ; Ninni Saarinen, Auteur ; Jiri Pyorala, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 397 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] biomasse forestière
[Termes IGN] croissance des arbres
[Termes IGN] dendrochronologie
[Termes IGN] densité du bois
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] éclaircie (sylviculture)
[Termes IGN] Finlande
[Termes IGN] forêt équienne
[Termes IGN] modèle linéaire
[Termes IGN] Pinus sylvestris
[Termes IGN] puits de carbone
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] variation de densitéRésumé : (auteur) Wood density is well known to vary between tree species as well as within and between trees of a certain species depending on the growing environment causing uncertainties in forest biomass and carbon storage estimation. This has created a need to develop novel methodologies to obtain wood density information over multiple tree communities, landscapes, and ecoregions. Therefore, the aim of this study was to evaluate the dependencies between structural characteristics of Scots pine (Pinus sylvestris L.) tree communities and internal wood property (i.e., mean wood density and ring width) variations at breast height. Terrestrial laser scanning was used to derive the structural characteristics of even-aged Scots pine dominated forests with varying silvicultural treatments. Pearson’s correlations and linear mixed effect models were used to evaluate the interactions. The results show that varying silvicultural treatments did not have a statistically significant effect on the mean wood density. A notably stronger effect was observed between the structural characteristics and the mean ring width within varying treatments. It can be concluded that single time terrestrial laser scanning is capable of capturing the variability of structural characteristics and their interactions with mean ring width within different silvicultural treatments but not the variation of mean wood density. Numéro de notice : A2027-208 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13030397 Date de publication en ligne : 28/02/2022 En ligne : https://doi.org/10.3390/f13030397 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100025
in Forests > vol 13 n° 3 (March 2022) . - n° 397[article]A comparison of linear-mode and single-photon airborne LiDAR in species-specific forest inventories / Janne Raty in IEEE Transactions on geoscience and remote sensing, vol 60 n° 1 (January 2022)
![]()
[article]
Titre : A comparison of linear-mode and single-photon airborne LiDAR in species-specific forest inventories Type de document : Article/Communication Auteurs : Janne Raty, Auteur ; Petri Varvia, Auteur ; Lauri Korhonen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4401514 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] altitude
[Termes IGN] analyse comparative
[Termes IGN] capteur linéaire
[Termes IGN] carte de la végétation
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] instrumentation Leica
[Termes IGN] instrumentation Riegl
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] photon
[Termes IGN] Pinophyta
[Termes IGN] semis de points
[Termes IGN] signal laserRésumé : (auteur) Single-photon airborne light detection and ranging (LiDAR) systems provide high-density data from high flight altitudes. We compared single-photon and linear-mode airborne LiDAR for the prediction of species-specific volumes in boreal coniferous-dominated forests. The LiDAR data sets were acquired at different flight altitudes using Leica SPL100 (single-photon, 17 points ⋅ m−2 ), Riegl VQ-1560i (linear-mode, 11 points ⋅ m−2 ), and Leica ALS60 (linear-mode, 0.6 points ⋅ m−2 ) LiDAR systems. Volumes were predicted at the plot-level using Gaussian process regression with predictor variables extracted from the LiDAR data sets and aerial images. Our findings showed that the Leica SPL100 produced a greater mean root-mean-squared error (RMSE) value (41.7 m3 ⋅ ha −1 ) than the Leica ALS60 (39.3 m3 ⋅ ha −1 ) in the prediction of species-specific volumes. Correspondingly, the Riegl VQ-1560i (mean RMSE = 33.0 m3 ⋅ ha −1 ) outperformed both the Leica ALS60 and the Leica SPL100. We found that the cumulative distributions of the first echo heights >1.3 m were rather similar among the data sets, whereas the last echo distributions showed larger differences. We conclude that the Leica SPL100 data set is suitable for area-based LiDAR inventory by tree species although the prediction errors are greater than with data obtained using the modern linear-mode LiDAR, such as Riegl VQ-1560i. Numéro de notice : A2022-026 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1109/TGRS.2021.3060670 Date de publication en ligne : 04/03/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3060670 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99257
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 1 (January 2022) . - n° 4401514[article]Factors affecting winter damage and recovery of newly planted Norway spruce seedlings in boreal forests / Jaana Luoranen in Forest ecology and management, vol 503 (1 January 2022)
PermalinkExtensification and afforestation of cultivated mineral soil for climate change mitigation in Finland / Boris Tupek in Forest ecology and management, vol 501 (1 December 2021)
PermalinkAge-dependence of stand biomass in managed boreal forests based on the Finnish National Forest Inventory data / Anna Repo in Forest ecology and management, vol 498 (15 October 2021)
PermalinkModels for integrating and identifying the effect of senescence on individual tree survival probability for Norway spruce / Jouni Siipilehto in Silva fennica, vol 55 n° 2 (April 2021)
PermalinkDetecting structural changes induced by Heterobasidion root rot on Scots pines using terrestrial laser scanning / Timo P Pitkänen in Forest ecology and management, vol 492 (15 July 2021)
PermalinkValidating geoid models with marine GNSS measurements, sea surface models, and additional gravity observations in the Gulf of Finland / Timo Saari in Marine geodesy, vol 44 n° 3 (May 2021)
PermalinkDetecting archaeological features with airborne laser scanning in the alpine tundra of Sápmi, Northern Finland / Oula Seitsonen in Remote sensing, vol 13 n° 8 (April-2 2021)
PermalinkThe impact of drought stress on the height growth of young norway spruce full-sib and half-sib clonal trials in Sweden and Finland / Haleh Hayatgheibi in Forests, vol 12 n° 4 (April 2021)
PermalinkRange-wide demographic patterns in European forests along climatic marginality gradients : An approach using national forest inventories / Alexandre Changenet (2021)
PermalinkVolumes by tree species can be predicted using photogrammetric UAS data, Sentinel-2 images and prior field measurements / Mikko Kukkonen in Silva fennica, vol 55 n° 1 (January 2021)
Permalink