Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > botanique > botanique systématique > Tracheophyta > Spermatophytina > Angiosperme > Dicotylédone vraie > Fagaceae > Fagus (genre)
Fagus (genre)Synonyme(s)Fayard hêtreVoir aussi |
Documents disponibles dans cette catégorie (156)



Etendre la recherche sur niveau(x) vers le bas
Assessment of camera focal length influence on canopy reconstruction quality / Martin Denter in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 6 (December 2022)
![]()
[article]
Titre : Assessment of camera focal length influence on canopy reconstruction quality Type de document : Article/Communication Auteurs : Martin Denter, Auteur ; Julian Frey, Auteur ; Teja Kattenborn, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100025 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] Abies alba
[Termes IGN] Acer pseudoplatanus
[Termes IGN] Allemagne
[Termes IGN] canopée
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Fagus sylvatica
[Termes IGN] image captée par drone
[Termes IGN] Larix decidua
[Termes IGN] longueur focale
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] parcelle forestière
[Termes IGN] Picea abies
[Termes IGN] reconstruction d'image
[Termes IGN] semis de points
[Termes IGN] structure-from-motionRésumé : (auteur) Unoccupied aerial vehicles (UAV) with RGB-cameras are affordable and versatile devices for the generation of a series of remote sensing products that can be used for forest inventory tasks, such as creating high-resolution orthomosaics and canopy height models. The latter may serve purposes including tree species identification, forest damage assessments, canopy height or timber stock assessments. Besides flight and image acquisition parameters such as image overlap, flight height, and weather conditions, the focal length, which determines the opening angle of the camera lens, is a parameter that influences the reconstruction quality. Despite its importance, the effect of focal length on the quality of 3D reconstructions of forests has received little attention in the literature. Shorter focal lengths result in more accurate distance estimates in the nadir direction since small angular errors lead to large positional errors in narrow opening angles. In this study, 3D reconstructions of four UAV-acquisitions with different focal lengths (21, 35, 50, and 85 mm) on a 1 ha mature mixed forest plot were compared to reference point clouds derived from high quality Terrestrial Laser Scans. Shorter focal lengths (21 and 35 mm) led to a higher agreement with the TLS scans and thus better reconstruction quality, while at 50 mm, quality losses were observed, and at 85 mm, the quality was considerably worse. F1-scores calculated from a voxel representation of the point clouds amounted to 0.254 with 35 mm and 0.201 with 85 mm. The precision with 21 mm focal length was 0.466 and 0.302 with 85 mm. We thus recommend a focal length no longer than 35 mm during UAV Structure from Motion (SfM) data acquisition for forest management practices. Numéro de notice : A2022-870 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100025 Date de publication en ligne : 09/11/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100025 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102164
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 6 (December 2022) . - n° 100025[article]Climate and ungulate browsing impair regeneration dynamics in spruce-fir-beech forests in the French Alps / Mithila Unkule in Annals of Forest Science, vol 79 n° 1 (2022)
![]()
[article]
Titre : Climate and ungulate browsing impair regeneration dynamics in spruce-fir-beech forests in the French Alps Type de document : Article/Communication Auteurs : Mithila Unkule, Auteur ; Christian Piedallu, Auteur ; Philippe Balandier, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 11 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Abies alba
[Termes IGN] Alpes (France)
[Termes IGN] Cervidae
[Termes IGN] Fagus sylvatica
[Termes IGN] faune locale
[Termes IGN] hauteur des arbres
[Termes IGN] humidité du sol
[Termes IGN] Jura, massif du
[Termes IGN] Picea abies
[Termes IGN] placette d'échantillonnage
[Termes IGN] régénération (sylviculture)
[Termes IGN] sécheresse
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Key message: Different components of water balance and temperature reduce density and height growth of saplings of Picea abies (L.) H. Karst (Norway spruce), Abies alba Mill. (silver fir) and Fagus sylvatica L. (European beech) in mixed uneven-aged forests in the French Alps and Jura mountains. Ungulate browsing is an additional pressure on fir and beech that could jeopardise the renewal of these species in the future.
Context: The uncertainty in tree recruitment rates raises questions about the factors affecting regeneration processes in forests. Factors such as climate, light, competition and ungulate browsing pressure may play an important role in determining regeneration, forest structures and thus future forest composition.
Aims: The objective of this study was to quantify sapling densities and height increments of spruce, fir and beech and to identify dominant environmental variables influencing them in mixed uneven-aged forests in the French Alps and Jura mountains.
Methods: Sapling height increment and density were recorded in 152 plots, and non-linear mixed models were obtained to establish relations between them and environmental factors known to affect regeneration, namely altitude, slope, aspect, canopy openness, soil characteristics, temperature, precipitation and ungulate browsing.
Results: Regeneration density, varying from 0 to 7 saplings per m 2, decreased with sapling height and was also negatively affected for spruce by PET, but positively for fir by precipitation and for beech by mean annual soil water content. Height increment reached up to 50 cm annually, increasing with sapling height and canopy openness and decreasing under high maximum summer temperatures for spruce and beech. The statistical effect of different environmental variables varied slightly among species but trends were quite similar. Additionally, ungulate browsing was high, with fir being the most intensely browsed, followed closely by beech, while spruce was rarely browsed.
Conclusions: All these results suggest that more temperature warming and a decrease in water availability could negatively impact sapling growth and density in the three species, with possible reduction of forest renewal fluxes. The observed increase of ungulate populations leading to increased browsing could be particularly detrimental to fir saplings.Numéro de notice : A2022-509 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01126-y Date de publication en ligne : 23/03/2022 En ligne : https://doi.org/10.1186/s13595-022-01126-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101045
in Annals of Forest Science > vol 79 n° 1 (2022) . - n° 11[article]Climate envelope analyses suggests significant rearrangements in the distribution ranges of Central European tree species / Gàbor Illés in Annals of Forest Science, vol 79 n° 1 (2022)
![]()
[article]
Titre : Climate envelope analyses suggests significant rearrangements in the distribution ranges of Central European tree species Type de document : Article/Communication Auteurs : Gàbor Illés, Auteur ; Norbert Móricz, Auteur Année de publication : 2022 Article en page(s) : n° 35 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] adaptation (biologie)
[Termes IGN] bioclimatologie
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] Europe centrale
[Termes IGN] Fagus sylvatica
[Termes IGN] gestion forestière durable
[Termes IGN] INSPIRE
[Termes IGN] modèle dynamique
[Termes IGN] modélisation de la forêt
[Termes IGN] Picea abies
[Termes IGN] Quercus cerris
[Termes IGN] Quercus pubescens
[Termes IGN] Quercus sessiliflora
[Termes IGN] répartition géographique
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Key message: Climate envelope analysis of nine tree species shows that Fagus sylvatica L. and Picea abies H. Karst could lose 58% and 40% of their current distribution range. Quercus pubescens Willd and Quercus cerris L. may win areas equal with 47% and 43% of their current ranges. The ratio of poorly predictable areas increases by 105% in southern and south-eastern Europe.
Context: Climate change requires adaptive forest management implementations. To achieve climate neutrality, we have to maintain and expand forest areas. Impact assessments have great importance.
Aims: The study estimates the potential climate envelopes of nine European tree species for a past period (1961–1990) and for three future periods (2011–2040, 2041–2070, 2071–2100) under two emission scenarios (RCP4.5 and RCP8.5) based on the current species distribution.
Methods: Climate envelopes were estimated simultaneously using the random forest method. Multi-resolution segmentation was used to determine the climatic characteristics of each species and their combinations. Models were limited to the geographical area within which the climatic conditions correspond to the climatic range of the training areas.
Results: Results showed remarkable changes in the extent of geographic areas of all the investigated species’ climate envelopes. Many of the tree species of Central Europe could lose significant portions of their distribution range. Adhering to the shift in climate, these tree species shift further north as well as towards higher altitudes.
Conclusion: European forests face remarkable changes, and the results support climate envelope modelling as an important tool that provides guidelines for climate adaptation to identify threatened areas or to select source and destination areas for reproductive material.Numéro de notice : A2022-631 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01154-8 Date de publication en ligne : 09/08/2022 En ligne : https://doi.org/10.1186/s13595-022-01154-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101395
in Annals of Forest Science > vol 79 n° 1 (2022) . - n° 35[article]Development and long-term dynamics of old-growth beech-fir forests in the Pyrenees: Evidence from dendroecology and dynamic vegetation modelling / Dario Martín-Benito in Forest ecology and management, vol 524 (November-15 2022)
![]()
[article]
Titre : Development and long-term dynamics of old-growth beech-fir forests in the Pyrenees: Evidence from dendroecology and dynamic vegetation modelling Type de document : Article/Communication Auteurs : Dario Martín-Benito, Auteur ; Juan Alberto Molina-Valero, Auteur ; César Pérez-Cruzado, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 120541 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Abies alba
[Termes IGN] analyse diachronique
[Termes IGN] biomasse forestière
[Termes IGN] dendroécologie
[Termes IGN] dynamique de la végétation
[Termes IGN] Espagne
[Termes IGN] exploitation forestière
[Termes IGN] Fagus sylvatica
[Termes IGN] forêt ancienne
[Termes IGN] forêt tempérée
[Termes IGN] modèle de croissance végétale
[Termes IGN] ombre
[Termes IGN] perturbation écologique
[Termes IGN] Pyrénées (montagne)
[Vedettes matières IGN] ForesterieRésumé : (auteur) Ecological knowledge on long-term forest dynamics and development has been primarily derived from the study of old-growth forests. Centuries of forest management have decreased the extent of temperate old-growth forests in Europe and altered managed forests. Disentangling the effects of past human disturbances and climate on current species composition is crucial for understanding the long-term development of forests under global change. In this study, we investigated disturbance and recruitment dynamics in two forests in the Western Pyrenees (Spain) with contrasting management history: an old-growth forest and a long-untouched forest, both dominated by the two shade-tolerant species Fagus sylvatica (European beech) and Abies alba (Silver fir). We used dendroecological methods in seven plots to analyse forest structure, growth patterns and disturbance histories in these forests. We benchmarked these data with the dynamic vegetation model ForClim to examine the effects of natural and human-induced disturbances on forest development, structure and species composition. Disturbance regimes differed between the study forests, but none showed evidence of stand replacing disturbances, either natural or human induced. Low disturbance rates and continuous recruitment of beech and fir dominated the old-growth forest over the last 400 years. In contrast, the long-untouched forest was intensively disturbed in 1700–1780, probably by logging, with lower natural disturbance rates thereafter. Beech and fir recruitment preferentially occurred after more intense disturbances, despite the high shade tolerance of both beech and fir. Higher fir abundance in the long-untouched forest than in the old-growth forest appeared to be related to its human-induced disturbances. ForClim closely simulated forest potential natural vegetation with a dominance of beech over fir, but overestimated the presence of less shade-tolerant species. Previously observed local fir decline may result from natural forest successional processes after logging. Within ∼200 years after logging cessation, some long-untouched forest structural attributes converged towards old-growth forest, but legacy effects still affected species composition and structure. Natural disturbance regimes in beech-fir forests of the Western Pyrenees induce temporal fluctuations between beech and fir abundance, with a natural tendency for beech dominance in advanced developmental stages with low disturbance rates. Numéro de notice : A2022-732 Affiliation des auteurs : non IGN Thématique : FORET/MATHEMATIQUE Nature : Article DOI : 10.1016/j.foreco.2022.120541 Date de publication en ligne : 23/09/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120541 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101695
in Forest ecology and management > vol 524 (November-15 2022) . - n° 120541[article]Age-independent diameter increment models for mixed mountain forests / Albert Ciceu in European Journal of Forest Research, vol 141 n° 5 (October 2022)
![]()
[article]
Titre : Age-independent diameter increment models for mixed mountain forests Type de document : Article/Communication Auteurs : Albert Ciceu, Auteur ; Karol Bronisz, Auteur ; Juan Garcia-Duro, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 781 - 800 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Abies alba
[Termes IGN] croissance des arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] échantillonnage
[Termes IGN] Fagus sylvatica
[Termes IGN] forêt alpestre
[Termes IGN] forêt inéquienne
[Termes IGN] modèle de croissance végétale
[Termes IGN] modélisation de la forêt
[Termes IGN] peuplement mélangé
[Termes IGN] Picea abies
[Termes IGN] Roumanie
[Vedettes matières IGN] ForesterieRésumé : (auteur) Mixed mountain forests with an uneven-aged structure are characterized by a high tree-growth variability making traditional age-dependent growth models inapplicable. Estimating site productivity is yet another impediment for modelling tree growth in such forests. Uneven-aged mixed-stand forests are known for their high resilience, resistance and productivity, and are being promoted as a suitable alternative to even-aged, pure plantations for climate change adaptation and mitigation. However, their growth must be accurately measured and predicted, but diameter at the breast height (dbh) increment models specifically designed for uneven-aged mixed mountain forests are still rare. Using permanent sampling network data and 465 increment cores, we built two age-independent dbh increment (id) models for the main species of the study area, namely Norway spruce (Picea abies (L.) Karst.), silver fir (Abies alba Mill.) and European beech (Fagus sylvatica L.). Mixed effects models and the algebraic difference approach were employed to develop id models based on empirical and commonly used theoretical growth functions. A past growth index was further developed and introduced in the model in order to explain the id variability. Several mixed effects calibration strategies were assessed in order to obtain the most accurate localized curve for new plots. Tree size, competition and biogeoclimatic variables were found to explain the id through the empirical growth function, while the growth index significantly improved the theoretical growth function for Norway spruce. The optimization of the calibration strategy for the mixed effects modelling framework enables the growth index implementation in forest practice as an accurate method for estimating site productivity. The accuracy of the two id models was similar: the root mean squared error of the empirical growth function varied between 0.940 and 1.042 cm for spruce, beech and fir, while the root mean squared error obtained through the theoretical growth function for spruce only was 1.105 cm. The basal area increment prediction at the plot level based on the theoretical growth function reached a root mean squared error of 0.043 m2 while using the empirical growth function the root mean squared error is 0.047 m2. The high accuracy obtained using age-independent models underlines their suitability for predicting growth in mixed uneven-aged forests. The developed models can be easily integrated into forest practice to accurately obtain id estimates. Numéro de notice : A2022-758 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s10342-022-01473-5 Date de publication en ligne : 13/08/2022 En ligne : https://doi.org/10.1007/s10342-022-01473-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101767
in European Journal of Forest Research > vol 141 n° 5 (October 2022) . - pp 781 - 800[article]Detecting overmature forests with airborne laser scanning (ALS) / Marc Fuhr in Remote sensing in ecology and conservation, vol 8 n° 5 (October 2022)
PermalinkRegional climate moderately influences species-mixing effect on tree growth-climate relationships and drought resistance for beech and pine across Europe / Géraud de Streel in Forest ecology and management, vol 520 (September-15 2022)
PermalinkTracing drought effects from the tree to the stand growth in temperate and Mediterranean forests: insights and consequences for forest ecology and management / Hans Pretzsch in European Journal of Forest Research, vol 141 n° 4 (August 2022)
PermalinkFunding for planting missing species financially supports the conversion from pure even-aged to uneven-aged mixed forests and climate change mitigation / Joerg Roessinger in European Journal of Forest Research, vol 141 n° 3 (June 2022)
PermalinkUnveiling the complex canopy spatial structure of a Mediterranean old-growth beech (Fagus sylvatica L.) forest from UAV observations / Francesco Solano in Ecological indicators, vol 138 (May 2022)
PermalinkCoupling fossil records and traditional discrimination metrics to test how genetic information improves species distribution models of the European beech Fagus sylvatica / Pedro Poli in European Journal of Forest Research, vol 141 n° 2 (April 2022)
PermalinkAre northern German Scots pine plantations climate smart? The impact of large-scale conifer planting on climate, soil and the water cycle / Christoph Leuschner in Forest ecology and management, vol 507 (March-1 2022)
PermalinkAn open science and open data approach for the statistically robust estimation of forest disturbance areas / Saverio Francini in International journal of applied Earth observation and geoinformation, vol 106 (February 2022)
PermalinkSurvival time and mortality rate of regeneration in the deep shade of a primeval beech forest / R. Petrovska in European Journal of Forest Research, vol 141 n° 1 (February 2022)
PermalinkForest floor alteration by canopy trees and soil wetness drive regeneration of a spruce-beech forest / Pavel Daněk in Forest ecology and management, vol 504 (January-15 2022)
Permalink