Descripteur


Etendre la recherche sur niveau(x) vers le bas
Recent increase in European forest harvests as based on area estimates (Ceccherini et al. 2020a) not confirmed in the French case / Nicolas Picard in Annals of Forest Science [en ligne], vol 78 n° 1 (March 2021)
![]()
[article]
Titre : Recent increase in European forest harvests as based on area estimates (Ceccherini et al. 2020a) not confirmed in the French case Type de document : Article/Communication Auteurs : Nicolas Picard, Auteur ; Jean-Michel Leban , Auteur ; Jean-Marc Guehl, Auteur ; Erwin Dreyer, Auteur ; Olivier Bouriaud
, Auteur ; Jean-Daniel Bontemps
, Auteur ; Guy Landmann, Auteur ; Antoine Colin
, Auteur ; Jean-Luc Peyron, Auteur ; Pascal Marty, Auteur
Année de publication : 2021 Projets : 1-Pas de projet / Article en page(s) : n° 9 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] base de données forestières
[Termes descripteurs IGN] exploitation forestière
[Termes descripteurs IGN] France (administrative)
[Termes descripteurs IGN] inventaire forestier national (données France)
[Termes descripteurs IGN] récolte de bois
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] superficie
[Termes descripteurs IGN] tempête Klaus de 2009
[Termes descripteurs IGN] volume en bois
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) A recent paper by Ceccherini et al.( 2020a ) reported an abrupt increase of 30% in the French harvested forest area in 2016–2018 compared to 2004–2015. A re-analysis of their data rather led us to conclude that, when accounting for the singular effect of storm Klaus, the rate of change in harvested area depended on the change year used to separate the two periods to compare. Moreover, the comparison with data on harvested volumes from different sources brought contrasted results depending on the source. Therefore, it cannot be concluded that wood harvest increased in France in 2016–2018 compared to 2004–2015. The discrepancy between Ceccherini et al.’s data and other data on harvested volumes points out the difficulty of reconciling different approaches to estimate wood harvest at a country level. Numéro de notice : A2021-130 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-021-01030-x date de publication en ligne : 25/01/2021 En ligne : https://doi.org/10.1007/s13595-021-01030-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96964
in Annals of Forest Science [en ligne] > vol 78 n° 1 (March 2021) . - n° 9[article]Curved buildings reconstruction from airborne LiDAR data by matching and deforming geometric primitives / Jingwei Song in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
![]()
[article]
Titre : Curved buildings reconstruction from airborne LiDAR data by matching and deforming geometric primitives Type de document : Article/Communication Auteurs : Jingwei Song, Auteur ; Shaobo Xia, Auteur ; Jun Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1660 - 1674 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] courbe
[Termes descripteurs IGN] déformation géométrique
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] primitive géométrique
[Termes descripteurs IGN] reconstruction 3D du bâti
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] stockage de donnéesNuméro de notice : A2021-117 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2995732 date de publication en ligne : 08/06/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2995732 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96931
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 1660 - 1674[article]Choosing an appropriate training set size when using existing data to train neural networks for land cover segmentation / Huan Ning in Annals of GIS, vol 26 n° 4 (December 2020)
![]()
[article]
Titre : Choosing an appropriate training set size when using existing data to train neural networks for land cover segmentation Type de document : Article/Communication Auteurs : Huan Ning, Auteur ; Zhenlong Li, Auteur ; Cuizhen Wang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 329 - 342 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] contour
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] jeu de données
[Termes descripteurs IGN] Kiangsi (Chine)
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] segmentation sémantique
[Termes descripteurs IGN] taille du jeu de donnéesRésumé : (auteur) Land cover data is an inventory of objects on the Earth’s surface, which is often derived from remotely sensed imagery. Deep Convolutional Neural Network (DCNN) is a competitive method in image semantic segmentation. Some scholars argue that the inadequacy of training set is an obstacle when applying DCNNs in remote sensing image segmentation. While existing land cover data can be converted to large training sets, the size of training data set needs to be carefully considered. In this paper, we used different portions of a high-resolution land cover map to produce different sizes of training sets to train DCNNs (SegNet and U-Net) and then quantitatively evaluated the impact of training set size on the performance of the trained DCNN. We also introduced a new metric, Edge-ratio, to assess the performance of DCNN in maintaining the boundary of land cover objects. Based on the experiments, we document the relationship between the segmentation accuracy and the size of the training set, as well as the nonstationary accuracies among different land cover types. The findings of this paper can be used to effectively tailor the existing land cover data to training sets, and thus accelerate the assessment and employment of deep learning techniques for high-resolution land cover map extraction. Numéro de notice : A2020-800 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475683.2020.1803402 date de publication en ligne : 10/08/2020 En ligne : https://doi.org/10.1080/19475683.2020.1803402 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96723
in Annals of GIS > vol 26 n° 4 (December 2020) . - pp 329 - 342[article]Parsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss / Xianwei Zheng in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
![]()
[article]
Titre : Parsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss Type de document : Article/Communication Auteurs : Xianwei Zheng, Auteur ; Linxi Huan, Auteur ; Gui-Song Xia, Auteur ; Jianya Gong, Auteur Année de publication : 2020 Article en page(s) : pp 15-28 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] classification basée sur les régions
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] contour
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] méthode fondée sur le noyau
[Termes descripteurs IGN] scène urbaine
[Termes descripteurs IGN] segmentation sémantiqueRésumé : (Auteur) Parsing very high resolution (VHR) urban scene images into regions with semantic meaning, e.g. buildings and cars, is a fundamental task in urban scene understanding. However, due to the huge quantity of details contained in an image and the large variations of objects in scale and appearance, the existing semantic segmentation methods often break one object into pieces, or confuse adjacent objects and thus fail to depict these objects consistently. To address these issues uniformly, we propose a standalone end-to-end edge-aware neural network (EaNet) for urban scene semantic segmentation. For semantic consistency preservation inside objects, the EaNet model incorporates a large kernel pyramid pooling (LKPP) module to capture rich multi-scale context with strong continuous feature relations. To effectively separate confusing objects with sharp contours, a Dice-based edge-aware loss function (EA loss) is devised to guide the EaNet to refine both the pixel- and image-level edge information directly from semantic segmentation prediction. In the proposed EaNet model, the LKPP and the EA loss couple to enable comprehensive feature learning across an entire semantic object. Extensive experiments on three challenging datasets demonstrate that our method can be readily generalized to multi-scale ground/aerial urban scene images, achieving 81.7% in mIoU on Cityscapes Test set and 90.8% in the mean F1-score on the ISPRS Vaihingen 2D Test set. Code is available at: https://github.com/geovsion/EaNet. Numéro de notice : A2020-703 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.09.019 date de publication en ligne : 14/10/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.09.019 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96228
in ISPRS Journal of photogrammetry and remote sensing > vol 170 (December 2020) . - pp 15-28[article]A fractal projection and Markovian segmentation-based approach for multimodal change detection / Max Mignotte in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
![]()
[article]
Titre : A fractal projection and Markovian segmentation-based approach for multimodal change detection Type de document : Article/Communication Auteurs : Max Mignotte, Auteur Année de publication : 2020 Article en page(s) : pp 8046 - 8058 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] champ aléatoire de Markov
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] décomposition d'image
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] estimation bayesienne
[Termes descripteurs IGN] géométrie fractale
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] projection
[Termes descripteurs IGN] segmentation d'imageRésumé : (auteur) Change detection in heterogeneous bitemporal satellite images has become an emerging, important, and challenging research topic in remote sensing for rapid damage assessment. In this article, we explore a new parametric mapping strategy based on a modified geometric fractal decomposition and a contractive mapping approach allowing us to project the before image on any after imaging modality type. This projection exploits the fact that any satellite image data can be approximatively encoded in terms of spatial self-similarities at different scales and this property remains quite invariant to a given imaging modality type. Once the projection is performed and that a pixelwise difference map between the two images (presented in the same imaging modality) is then binarized in the unsupervised Bayesian framework. At this stage, we will test several parameter estimation procedures combined with several segmentation strategies based on different Bayesian cost functions. The experiments for change detection, with real images showing different multimodalities and changed events, indicate that this new fractal-based projection method, which is entirely based on a series of structural and spatial information, is an interesting alternative to classical regression-based projection methods (based only on luminance transformation). Besides, the experiments also show that the difference map, resulting in this novel projection strategy, is also particularly amenable for an unsupervised Markovian binarization approach. Numéro de notice : A2020-682 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2986239 date de publication en ligne : 30/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2986239 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96207
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 8046 - 8058[article]A multi-scale representation model of polyline based on head/tail breaks / Pengcheng Liu in International journal of geographical information science IJGIS, vol 34 n° 11 (November 2020)
PermalinkNetwork-constrained bivariate clustering method for detecting urban black holes and volcanoes / Qiliang Liu in International journal of geographical information science IJGIS, vol 34 n° 10 (October 2020)
PermalinkMining regional patterns of land use with adaptive adjacent criteria / Xinmeng Tu in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)
PermalinkSemi-automated framework for generating cycling lane centerlines on roads with roadside barriers from noisy MLS data / Yang Ma in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
PermalinkAmbiguous use of geographical information systems for the rectification of large-scale geometric maps / Anders Wästfelt in Cartographic journal (the), Vol 57 n° 3 (August 2020)
PermalinkPlanar polygons detection in lidar scans based on sensor topology enhanced Ransac / Stéphane Guinard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
PermalinkRecent changes in two outlet glaciers in the Antarctic Peninsula using multi-temporal Landsat and Sentinel-1 data / Carolina L. Simões in Geocarto international, vol 35 n° 11 ([01/08/2020])
PermalinkSmall‐area patch‐merging method accounting for both local constraints and the overall area balance / Chengming Li in Transactions in GIS, Vol 24 n° 4 (August 2020)
PermalinkPedestrian network generation based on crowdsourced tracking data / Xue Yang in International journal of geographical information science IJGIS, vol 34 n° 5 (May 2020)
PermalinkAdaptive Statistical Superpixel Merging With Edge Penalty for PolSAR Image Segmentation / Deliang Xiang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
Permalink