Descripteur
Termes IGN > foresterie > sylviculture > typologie des stations forestières > forêt tropicale
forêt tropicaleSynonyme(s)forêt ombrophileVoir aussi |
Documents disponibles dans cette catégorie (228)



Etendre la recherche sur niveau(x) vers le bas
PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data / Qi Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)
![]()
[article]
Titre : PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data Type de document : Article/Communication Auteurs : Qi Zhang, Auteur ; Linlin Ge, Auteur ; Scott Hensley, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 123 - 139 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse discriminante
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage profond
[Termes IGN] bande L
[Termes IGN] données lidar
[Termes IGN] forêt boréale
[Termes IGN] forêt tropicale
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] hauteur de la végétation
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] polarimétrie radar
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] réseau antagoniste génératif
[Termes IGN] semis de pointsRésumé : (auteur) This paper describes a deep-learning-based unsupervised forest height estimation method based on the synergy of the high-resolution L-band repeat-pass Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) and low-resolution large-footprint full-waveform Light Detection and Ranging (LiDAR) data. Unlike traditional PolInSAR-based methods, the proposed method reformulates the forest height inversion as a pan-sharpening process between the low-resolution LiDAR height and the high-resolution PolSAR and PolInSAR features. A tailored Generative Adversarial Network (GAN) called PolGAN with one generator and dual (coherence and spatial) discriminators is proposed to this end, where a progressive pan-sharpening strategy underpins the generator to overcome the significant difference between spatial resolutions of LiDAR and SAR-related inputs. Forest height estimates with high spatial resolution and vertical accuracy are generated through a continuous generative and adversarial process. UAVSAR PolInSAR and LVIS LiDAR data collected over tropical and boreal forest sites are used for experiments. Ablation study is conducted over the boreal site evidencing the superiority of the progressive generator with dual discriminators employed in PolGAN (RMSE: 1.21 m) in comparison with the standard generator with dual discriminators (RMSE: 2.43 m) and the progressive generator with a single coherence (RMSE: 2.74 m) or spatial discriminator (RMSE: 5.87 m). Besides that, by reducing the dependency on theoretical models and utilizing the shape, texture, and spatial information embedded in the high-spatial-resolution features, the PolGAN method achieves an RMSE of 2.37 m over the tropical forest site, which is much more accurate than the traditional PolInSAR-based Kapok method (RMSE: 8.02 m). Numéro de notice : A2022-195 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.02.008 Date de publication en ligne : 17/02/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.02.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99962
in ISPRS Journal of photogrammetry and remote sensing > vol 186 (April 2022) . - pp 123 - 139[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022041 SL Revue Centre de documentation Revues en salle Disponible 081-2022043 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2022042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Simulating future LUCC by coupling climate change and human effects based on multi-phase remote sensing data / Zihao Huang in Remote sensing, vol 14 n° 7 (April-1 2022)
![]()
[article]
Titre : Simulating future LUCC by coupling climate change and human effects based on multi-phase remote sensing data Type de document : Article/Communication Auteurs : Zihao Huang, Auteur ; Xuejian Li, Auteur ; Qiang Du, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1698 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] automate cellulaire
[Termes IGN] changement climatique
[Termes IGN] changement d'utilisation du sol
[Termes IGN] Chine
[Termes IGN] écosystème forestier
[Termes IGN] forêt tropicale
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] interaction homme-milieu
[Termes IGN] modèle de simulation
[Termes IGN] modèle dynamique
[Termes IGN] modèle numérique de surface
[Termes IGN] puits de carbone
[Termes IGN] simulation spatialeRésumé : (auteur) Future land use and cover change (LUCC) simulations play an important role in providing fundamental data to reveal the carbon cycle response of forest ecosystems to LUCC. Subtropical forests have great potential for carbon sequestration, yet their future dynamics under natural and human influences are unclear. Zhejiang Province in China is an important distribution area for subtropical forests. For forest management, it is of great significance to explore the future dynamic changes of subtropical forests in Zhejiang. As a popular LUCC spatial simulation model, the cellular automata (CA) model coupled with machine learning and LUCC quantitative demand models such as system dynamics (SD) can achieve effective LUCC simulation. Therefore, we first integrated a back propagation neural network (BPNN), a CA, and a SD model as a BPNN_CA_SD (BCS) coupled model for future LUCC simulation and then designed a slow development scenario (SD_Scenario), a harmonious development scenario (HD_Scenario), a baseline development scenario (BD_Scenario), and a fast development scenario (FD_Scenario), combining climate change and human disturbance. Thirdly, we obtained future land-use patterns in Zhejiang Province from 2014 to 2084 under multiple scenarios, and finally, we analyzed the temporal and spatial changes of land use and discussed the subtropical forest dynamics of the future. The results showed the following: (1) The overall accuracy was approximately 0.8, the kappa coefficient was 0.75, and the figure of merit (FOM) value was over 28% when using the BCS model to predict LUCC, indicating that the model could predict the consistent change of LUCC accurately. (2) The future evolution of the LUCC under different scenarios varied, with the growth of bamboo forests and the decline of coniferous forests in the FD_Scenario being prominent among the forest dynamics changes. Compared with 2014, the bamboo forest in 2084 will increase by 37%, while the coniferous forest will decrease by 25%. (3) Comparing the area and spatial change of the subtropical forests, the SD_Scenario was found to be beneficial for the forest ecology. These results can provide an important decision-making reference for land-use planning and sustainable forest development in Zhejiang Province. Numéro de notice : A2022-281 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14071698 Date de publication en ligne : 31/03/2022 En ligne : https://doi.org/10.3390/rs14071698 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100297
in Remote sensing > vol 14 n° 7 (April-1 2022) . - n° 1698[article]Relationships between species richness and ecosystem services in Amazonian forests strongly influenced by biogeographical strata and forest types / Gijs Steur in Scientific reports, vol 12 (2022)
![]()
[article]
Titre : Relationships between species richness and ecosystem services in Amazonian forests strongly influenced by biogeographical strata and forest types Type de document : Article/Communication Auteurs : Gijs Steur, Auteur ; Hans Ter Steege, Auteur ; René W. Verburg, Auteur ; Daniel Sabatier, Auteur ; Jean-François Molino, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5960 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Amazonie
[Termes IGN] forêt tropicale
[Termes IGN] produit forestier non ligneux
[Termes IGN] puits de carbone
[Termes IGN] richesse floristique
[Termes IGN] service écosystémique
[Termes IGN] strate végétale
[Termes IGN] volume en bois
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) Despite increasing attention for relationships between species richness and ecosystem services, for tropical forests such relationships are still under discussion. Contradicting relationships have been reported concerning carbon stock, while little is known about relationships concerning timber stock and the abundance of non-timber forest product producing plant species (NTFP abundance). Using 151 1-ha plots, we related tree and arborescent palm species richness to carbon stock, timber stock and NTFP abundance across the Guiana Shield, and using 283 1-ha plots, to carbon stock across all of Amazonia. We analysed how environmental heterogeneity influenced these relationships, assessing differences across and within multiple forest types, biogeographic regions and subregions. Species richness showed significant relationships with all three ecosystem services, but relationships differed between forest types and among biogeographical strata. We found that species richness was positively associated to carbon stock in all biogeographical strata. This association became obscured by variation across biogeographical regions at the scale of Amazonia, resembling a Simpson’s paradox. By contrast, species richness was weakly or not significantly related to timber stock and NTFP abundance, suggesting that species richness is not a good predictor for these ecosystem services. Our findings illustrate the importance of environmental stratification in analysing biodiversity-ecosystem services relationships. Numéro de notice : A2022-308 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET Nature : Article DOI : 10.1038/s41598-022-09786-6 Date de publication en ligne : 08/04/2022 En ligne : http://dx.doi.org/10.1038/s41598-022-09786-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100403
in Scientific reports > vol 12 (2022) . - n° 5960[article]Monitoring leaf phenology in moist tropical forests by applying a superpixel-based deep learning method to time-series images of tree canopies / Guangqin Song in ISPRS Journal of photogrammetry and remote sensing, vol 183 (January 2022)
![]()
[article]
Titre : Monitoring leaf phenology in moist tropical forests by applying a superpixel-based deep learning method to time-series images of tree canopies Type de document : Article/Communication Auteurs : Guangqin Song, Auteur ; Shengbiao Wu, Auteur ; Calvin K.F. Lee, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 19 - 33 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme SLIC
[Termes IGN] apprentissage profond
[Termes IGN] canopée
[Termes IGN] classification dirigée
[Termes IGN] diagnostic foliaire
[Termes IGN] Enhanced vegetation index
[Termes IGN] feuille (végétation)
[Termes IGN] forêt tropicale
[Termes IGN] Panama
[Termes IGN] phénologie
[Termes IGN] photosynthèse
[Termes IGN] segmentation sémantique
[Termes IGN] série temporelle
[Termes IGN] superpixel
[Termes IGN] variation saisonnièreRésumé : (auteur) Tropical leaf phenology—particularly its variability at the tree-crown scale—dominates the seasonality of carbon and water fluxes. However, given enormous species diversity, accurate means of monitoring leaf phenology in tropical forests is still lacking. Time series of the Green Chromatic Coordinate (GCC) metric derived from tower-based red–greenblue (RGB) phenocams have been widely used to monitor leaf phenology in temperate forests, but its application in the tropics remains problematic. To improve monitoring of tropical phenology, we explored the use of a deep learning model (i.e. superpixel-based Residual Networks 50, SP-ResNet50) to automatically differentiate leaves from non-leaves in phenocam images and to derive leaf fraction at the tree-crown scale. To evaluate our model, we used a year of data from six phenocams in two contrasting forests in Panama. We first built a comprehensive library of leaf and non-leaf pixels across various acquisition times, exposure conditions and specific phenocams. We then divided this library into training and testing components. We evaluated the model at three levels: 1) superpixel level with a testing set, 2) crown level by comparing the model-derived leaf fractions with those derived using image-specific supervised classification, and 3) temporally using all daily images to assess the diurnal stability of the model-derived leaf fraction. Finally, we compared the model-derived leaf fraction phenology with leaf phenology derived from GCC. Our results show that: 1) the SP-ResNet50 model accurately differentiates leaves from non-leaves (overall accuracy of 93%) and is robust across all three levels of evaluations; 2) the model accurately quantifies leaf fraction phenology across tree-crowns and forest ecosystems; and 3) the combined use of leaf fraction and GCC helps infer the timing of leaf emergence, maturation and senescence, critical information for modeling photosynthetic seasonality of tropical forests. Collectively, this study offers an improved means for automated tropical phenology monitoring using phenocams. Numéro de notice : A2022-009 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.10.023 Date de publication en ligne : 10/11/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.10.023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99057
in ISPRS Journal of photogrammetry and remote sensing > vol 183 (January 2022) . - pp 19 - 33[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022011 SL Revue Centre de documentation Revues en salle Disponible 081-2022013 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2022012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Mapping tropical forest trees across large areas with lightweight cost-effective terrestrial laser scanning / Shengli Tao in Annals of Forest Science [en ligne], vol 78 n° 4 (December 2021)
![]()
[article]
Titre : Mapping tropical forest trees across large areas with lightweight cost-effective terrestrial laser scanning Type de document : Article/Communication Auteurs : Shengli Tao, Auteur ; Nicolas Labrière, Auteur ; Kim Calders, Auteur ; Fabian Jörg Fischer, Auteur ; E. Rau, Auteur ; Laetitia Plaisance, Auteur ; Jérôme Chave, Auteur Année de publication : 2021 Article en page(s) : n° 103 Note générale : bibliographie
This work has benefitted from an “Investissement d'Avenir” grant managed by Agence Nationale de la Recherche (AnaEE France ANR-11-INBS-0001; CEBA, ref. ANR-10-LABX-25–01), the CNRS Nouragues station, and a CNES postdoctoral fellowship granted to S.T.Langues : Anglais (eng) Descripteur : [Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt tropicale
[Termes IGN] Guyane (département français)
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] placette d'échantillonnage
[Termes IGN] volume en bois
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Key message : We used lightweight terrestrial laser scanning (TLS) to detect over 3000 stems per hectare across a 12-ha permanent forest plot in French Guiana, 81% of them Context : Accurate position mapping of tropical rainforest trees is crucial for baseline studies of tropical forest ecology but is labor-intensive. Terrestrial lidar scanning (TLS) is broadly used in temperate forest inventories, but its use in rainforests is restricted to the determination of individual tree volumes within small survey areas.
Aims : Mapping tree stems across one large (12-ha) rainforest plot, including trees less than 10 cm DBH, and evaluating the precision of traditional mapping approaches.
Methods : We used lightweight TLS, co-registered the acquisitions, and developed a new efficient algorithm to process the TLS data.
Results : We detected 36,422 stems of which 29,665 (81%) were Conclusion : Lightweight TLS technology is a promising tool for the estimation of stem tapering and volume. Here, we show that it also facilitates the establishment of large tropical forest inventories, by improving the positioning of trees, thus increasing the accuracy of forest inventories and their cost-effectiveness.Numéro de notice : A2021-954 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1007/s13595-021-01113-9 Date de publication en ligne : 28/12/2021 En ligne : https://doi.org/10.1007/s13595-021-01113-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99998
in Annals of Forest Science [en ligne] > vol 78 n° 4 (December 2021) . - n° 103[article]Automatic tuning of segmentation parameters for tree crown delineation with VHR imagery / Camile Sothe in Geocarto international, vol 36 n° 19 ([01/11/2021])
PermalinkPrioritization of forest fire hazard risk simulation using Hybrid Grey Relativity Analysis (HGRA) and Fuzzy Analytical Hierarchy Process (FAHP) coupled with multicriteria decision analysis (MCDA) techniques – a comparative study analysis / Michael Stanley Peprah in Geodesy and cartography, vol 47 n° 3 (October 2021)
PermalinkMapping canopy heights in dense tropical forests using low-cost UAV-derived photogrammetric point clouds and machine learning approaches / He Zhang in Remote sensing, vol 13 n° 18 (September-2 2021)
PermalinkMulti-task fully convolutional network for tree species mapping in dense forests using small training hyperspectral data / Laura Elena Cué La Rosa in ISPRS Journal of photogrammetry and remote sensing, vol 179 (September 2021)
PermalinkThe real potential of current passive satellite data to map aboveground biomass in tropical forests / Nidhi Jha in Remote sensing in ecology and conservation, vol 7 n° 3 (September 2021)
PermalinkDirect analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) of wood reveals distinct chemical signatures of two species of Afzelia / Peter Kitin in Annals of Forest Science [en ligne], vol 78 n° 2 (June 2021)
PermalinkAboveground biomass estimates of tropical mangrove forest using Sentinel-1 SAR coherence data : The superiority of deep learning over a semi-empirical model / S.M. Ghosh in Computers & geosciences, vol 150 (May 2021)
PermalinkPotentialité des données satellitaires Sentinel-2 pour la cartographie de l’impact des feux de végétation en Afrique tropicale : application au Togo / Yawo Konko in Bois et forêts des tropiques, n° 347 ([02/04/2021])
PermalinkTropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning / Maryam Pourshamsi in ISPRS Journal of photogrammetry and remote sensing, vol 172 (February 2021)
PermalinkIndividual tree diameter growth modeling system for Dalat pine (Pinus dalatensis Ferré) of the upland mixed tropical forests / Bao Huy in Forest ecology and management, vol 480 (15 January 2021)
Permalink