Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géophysique interne > géodésie > géodésie spatiale > système de positionnement par satellites > Global Navigation Satellite System
Global Navigation Satellite SystemSynonyme(s)gnssVoir aussi |
Documents disponibles dans cette catégorie (131)



Etendre la recherche sur niveau(x) vers le bas
Titre : IGS International GNSS Service technical report 2021 (IGS Annual Report) Type de document : Rapport Auteurs : Arturo Villiger, Éditeur scientifique ; Rolf Dach, Éditeur scientifique ; IGS Central Bureau, Auteur ; University of Bern, Auteur Editeur : Bern : Astronomical Institute Année de publication : 2022 Importance : 238 p. Format : 21 x 30 cm Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] Global Navigation Satellite SystemRésumé : (Editeur) Applications of the Global Navigation Satellite Systems (GNSS) to Earth Sciences are numerous. The International GNSS Service (IGS), a voluntary federation of government agencies, universities and research institutions, combines GNSS resources and expertise to provide the highest–quality GNSS data, products, and services in order to support high–precision applications for GNSS–related research and engineering activities.
This IGS Technical Report includes contributions from the IGS Governing Board, the Central Bureau, Analysis Centers, Data Centers, station and network operators, working groups, pilot projects, and others highlighting status and important activities, changes and results that took place and were achieved during 2021.Note de contenu : 1. Executive Groups
2. Analysis Centers
3. Data Centers
4. Working Groups, Pilot ProjectsNuméro de notice : 14336 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Rapport nature-HAL : Rapport DOI : 10.48350/169536 En ligne : http://dx.doi.org/10.48350/156425 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102914 Robust GNSS carrier phase-based position and attitude estimation theory and applications / Daniel Arias Medina (2022)
![]()
Titre : Robust GNSS carrier phase-based position and attitude estimation theory and applications Type de document : Thèse/HDR Auteurs : Daniel Arias Medina, Auteur Editeur : Madrid [Espagne] : Universidad Carlos III Année de publication : 2022 Importance : 249 p. Format : 21 x 30 cm Note générale : bibliographie
A dissertation submitted by in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science and Technology, Universidad Carlos III de MadridLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] classification du maximum a posteriori
[Termes IGN] constellation GNSS
[Termes IGN] estimation de pose
[Termes IGN] filtrage du bruit
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] phase GNSS
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] résolution d'ambiguïté
[Termes IGN] signal GNSSIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Navigation information is an essential element for the functioning of robotic platforms and intelligent transportation systems. Among the existing technologies, Global Navigation Satellite Systems (GNSS) have established as the cornerstone for outdoor navigation, allowing for all-weather, all-time positioning and timing at a worldwide scale. GNSS is the generic term for referring to a constellation of satellites which transmit radio signals used primarily for ranging information. Therefore, the successful operation and deployment of prospective autonomous systems is subject to our capabilities to support GNSS in the provision of robust and precise navigational estimates. GNSS signals enable two types of ranging observations: –code pseudorange, which is a measure of the time difference between the signal’s emission and reception at the satellite and receiver, respectively, scaled by the speed of light; –carrier phase pseudorange, which measures the beat of the carrier signal and the number of accumulated full carrier cycles. While code pseudoranges provides an unambiguous measure of the distance between satellites and receiver, with a dm-level precision when disregarding atmospheric delays and clock offsets, carrier phase measurements present a much higher precision, at the cost of being ambiguous by an unknown number of integer cycles, commonly denoted as ambiguities. Thus, the maximum potential of GNSS, in terms of navigational precision, can be reach by the use of carrier phase observations which, in turn, lead to complicated estimation problems. This thesis deals with the estimation theory behind the provision of carrier phase-based precise navigation for vehicles traversing scenarios with harsh signal propagation conditions. Contributions to such a broad topic are made in three directions. First, the ultimate positioning performance is addressed, by proposing lower bounds on the signal processing realized at the receiver level and for the mixed real- and integer-valued problem related to carrier phase-based positioning. Second, multi-antenna configurations are considered for the computation of a vehicle’s orientation, introducing a new model for the joint position and attitude estimation problems and proposing new deterministic and recursive estimators based on Lie Theory. Finally, the framework of robust statistics is explored to propose new solutions to code- and carrier phase-based navigation, able to deal with outlying impulsive noises. Note de contenu : Introduction
I- A signal processing approach to satellite-based navigation
II- On the position and attitude estimation in multi-antenna GNSS
III- Robust estimation for navigation in harsh environments
Conclusions and future researchNuméro de notice : 15279 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Thèse étrangère Note de thèse : PhD Thesis : Computer Science and Technology : Carlos III Madrid : 2022 Organisme de stage : German Aerospace Center DOI : sans En ligne : https://e-archivo.uc3m.es/handle/10016/35375#preview Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101116 Mode N, an alternative positioning, navigation and timing system for aviation / Brandon Weaver in GPS world, vol 32 n° 11 (November 2021)
![]()
[article]
Titre : Mode N, an alternative positioning, navigation and timing system for aviation Type de document : Article/Communication Auteurs : Brandon Weaver, Auteur ; Gianluca Zampieri, Auteur ; Okuary Osechas, Auteur Année de publication : 2021 Article en page(s) : pp 28 - 33 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] Global Navigation Satellite System
[Termes IGN] GNSS assisté pour la navigation
[Termes IGN] interférence
[Termes IGN] trafic aérienNuméro de notice : A2021-795 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99071
in GPS world > vol 32 n° 11 (November 2021) . - pp 28 - 33[article]Documents numériques
en open access
Mode N, an alternative positioning ... - pdf éditeurAdobe Acrobat PDF
Titre : IGS International GNSS Service technical report 2020 (IGS Annual Report) Type de document : Rapport Auteurs : Arturo Villiger, Éditeur scientifique ; Rolf Dach, Éditeur scientifique ; IGS Central Bureau, Auteur ; University of Bern, Auteur Editeur : Bern : Astronomical Institute Année de publication : 2021 Importance : 262 p. Format : 21 x 30 cm Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] Global Navigation Satellite SystemRésumé : (Editeur) Applications of the Global Navigation Satellite Systems (GNSS) to Earth Sciences are numerous. The International GNSS Service (IGS), a voluntary federation of government agencies, universities and research institutions, combines GNSS resources and expertise to provide the highest–quality GNSS data, products, and services in order to support high–precision applications for GNSS–related research and engineering activities.
This IGS Technical Report includes contributions from the IGS Governing Board, the Central Bureau, Analysis Centers, Data Centers, station and network operators, working groups, pilot projects, and others highlighting status and important activities, changes and results that took place and were achieved during 2020.Note de contenu : 1. Executive Groups
2. Analysis Centers
3. Data Centers
4. Working Groups, Pilot ProjectsNuméro de notice : 14334 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Rapport nature-HAL : Rapport DOI : 10.48350/156425 En ligne : http://dx.doi.org/10.48350/156425 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102913
Titre : Remote sensing and GIS Type de document : Guide/Manuel Auteurs : Basudeb Bhatta, Auteur Mention d'édition : 3ème édition Editeur : Oxford, Londres, ... : Oxford University Press Année de publication : 2021 Importance : 752 p. Format : 24 x 18 cm ISBN/ISSN/EAN : 978-0-19-949664-8 Note générale : Bibliographie
additional reading material with Oxford arealLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Télédétection
[Termes IGN] acquisition d'images
[Termes IGN] airborne multispectral scanner
[Termes IGN] analyse spatiale
[Termes IGN] Global Navigation Satellite System
[Termes IGN] image hyperspectrale
[Termes IGN] image thermique
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] Lidar
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle numérique de terrain
[Termes IGN] modélisation 3D
[Termes IGN] orthorectification
[Termes IGN] Passive and Active L and S band Sensor
[Termes IGN] photographie aérienne
[Termes IGN] Satellite Microwave Radiometer
[Termes IGN] scène 3D
[Termes IGN] stéréoscopie
[Termes IGN] système d'information géographique
[Termes IGN] traitement d'image
[Termes IGN] visualisation 3DIndex. décimale : 35.00 Télédétection - généralités Résumé : (Editeur) Beginning with the history and basic concepts of remote sensing and GIS, the book gives an exhaustive coverage of optical, thermal, and microwave remote sensing, global navigation satellite systems (such as GPS and IRNSS), digital photogrammetry, visual image analysis, digital image processing, spatial and attribute data model, geospatial analysis, and planning, implementation, and management of GIS. It also presents the modern trends of remote sensing and GIS with an illustrated discussion on its numerous applications. Note de contenu : 1. Concept of Remote Sensing
1.1 Introduction
1.2 Distance of Remote Sensing
1.3 Definition of Remote Sensing
1.4 Remote Sensing: Art and/or Science
1.5 Data
1.6 Remote Sensing Process
1.7 Source of Energy
1.8 Interaction with Atmosphere
1.9 Interaction with Target
1.9.1 Hemispherical Absorptance, Transmittance, and Reflectan
1.10 Interaction with the Atmosphere Again
1.11 Recording of Energy by Sensor
1.12 Transmission, Reception, and Processing
1.13 Interpretation and Analysis
1.14 Applications of Remote Sensing
1.15 Advantages of Remote Sensing
1.16 Limitations of Remote Sensing
1.17 Ideal Remote Sensing System
2. Types of Remote Sensing and Sensor Characteristics
2.1 Introduction
2.2 Types of Remote Sensing
2.3 Characteristics of Images
2.4 Orbital Characteristics of Satellite
2.5 Remote Sensing Satellites
2.6 Concept of Swath
2.7 Concept of Nadir
2.8 Sensor Resolutions
2.9 Image Referencing System
2.9.1 Path
2.9.2 Row
2.9.3 Orbital Calendar
3. History of Remote Sensing and Indian Space Program
3.1 Introduction
3.2 The Early Age
3.3 The Middle Age
3.4 The Modern Age or Space Age
3.5 Indian Space Program
4. Photographic Imaging
4.1 Introduction
4.2 Camera Systems
4.3 Types of Camera
4.4 Filter
4.5 Film
4.6 Geometry of Aerial Photography
4.7 Ideal Time and Atmosphere for Aerial Remote Sensing
5. Digital Imaging
5.1 Introduction
5.2 Digital Image
5.3 Sensor
5.4 Imaging by Scanning Technique
5.5 Hyper-spectral Imaging
5.6 Imaging By Non-scanning Technique
5.7 Thermal Remote Sensing
5.8 Other Sensors
6. Microwave Remote Sensing
6.1 Introduction
6.2 Passive Microwave Remote Sensing
6.3 Active Microwave Remote Sensing
6.4 Radar Imaging
6.5 Airborne Versus Space-Borne Radars
6.6 Radar Systems
7. Ground-truth Data and Global Positioning System
7.1 Introduction
7.2 Requirements of Ground-Truth Data
7.3 Instruments for Ground Truthing
7.4 Parameters of Ground Truthing
7.5 Factors of Spectral Measurement
7.6 Global Navigation Satellite System
8. Photogrammetry
8.1 Introduction
8.2 Development of Photogrammetry
8.3 Classification of Photogrammetry
8.4 Photogrammetric Process
8.5 Acquisition of Imagery and its Support Data
8.6 Orientation and Triangulation
8.7 Stereo Model Compilation
8.8 Stereoscopic 3D Viewing
8.9 Stereoscopic Measurement
8.10 DTM/DEM Generation
8.11 Contour Map Generation
8.12 Orthorectification
8.13 3D Feature Extraction
8.14 3D Scene Modelling
8.15 Photogrammetry and LiDAR
8.16 Radargrammetry and Radar Interferometry
8.17 Limitations of Photogrammetry
9. Visual Image Interpretation
9.1 Introduction
9.2 Information Extraction by Human and Computer
9.3 Remote Sensing Data Products
9.4 Border or Marginal Information
9.5 Image Interpretation
9.6 Elements of Visual Image Interpretation
9.7 Interpretation Keys
9.8 Generation of Thematic Maps
9.9 Thermal Image Interpretation
9.10 Radar Image Interpretation
10. Digital Image Processing
10.1 Introduction
10.2 Categorization of Image Processing
10.3 Image Processing Systems
10.4 Digital Image
10.5 Media for Digital Data Recording, Storage, and Distribution
10.6 Data Formats of Digital Image
10.7 Header Information
10.8 Display of Digital Image
10.9 Pre-processing
10.10 Image Enhancement
10.11 Image Transformation
10.12 Image Classification
11. Data Integration, Analysis, and Presentation
11.1 Introduction
11.2 Multi-approach of Remote Sensing
11.3 Integration with Ground Truth and Other Ancillary Data
11.4 Integration of Transformed Data
11.5 Integration with GIS
11.6 Process of Remote Sensing Data Analysis
11.7 The Level of Detail
11.8 Limitations of Remote Sensing Data Analysis
11.9 Presentation
12. Applications of Remote Sensing
12.1 Introduction
12.2 Land Cover and Land Use
12.3 Agriculture
12.4 Forestry
12.5 Geology
12.6 Geomorphology
12.7 Urban Applications
12.8 Hydrology
12.9 Mapping
12.10 Oceans and Coastal Monitoring
12.11 Monitoring of Atmospheric Constituents
PART II Geographic Information Systems and Geospatial Analysis
13. Concept of Geographic Information Systems
13.1 Introduction
13.2 Definitions of GIS
13.3 Key Components of GIS
13.4 GIS-An Integration of Spatial and Attribute Information
13.5 GIS-Three Views of Information System
13.6 GIS and Related Terms
13.7 GIS-A Knowledge Hub
13.8 GIS-A Set of Interrelated Subsystems
13.9 GIS-An Information Infrastructure
13.10 Origin of GIS
14. Functions and Advantages of GIS
14.1 Introduction
14.2 Functions of GIS
14.3 Application Areas of GIS
14.4 Advantages of GIS
14.5 Functional Requirements of GIS
14.6 Limitations of GIS
15. Spatial Data Model
15.1 Introduction
15.2 Spatial, Thematic, and Temporal Dimensions of Geographic Data
15.3 Spatial Entity and Object
15.4 Spatial Data Model
15.5 Raster Data Model
15.6 Vector Data Model
15.7 Raster versus Vector
15.8 Object-Oriented Data Model
15.9 File Formats of Spatial Data
16. Attribute Data Management and Metadata Concept
16.1 Introduction
16.2 Concept of Database and DBMS
16.3 Advantages of DBMS
16.4 Functions of DBMS
16.5 File and Data Access
16.6 Data Models
16.7 Database Models
16.8 Data Models in GIS
16.9 Concept of SQL
16.10 Concept of Metadata
17. Process of GIS
17.1 Introduction
17.2 Data Capture
17.3 Data Sources
17.4 Data Encoding Methods
17.5 Linking of Spatial and Attribute Data
17.6 Organizing Data for Analysis
18. Geospatial Analysis
18.1 Introduction
18.2 Geospatial Data Analysis
18.3 Integration and Modelling of Spatial Data
18.4 Geospatial Data Analysis Methods
18.5 Database Query
18.6 Geospatial Measurements
18.7 Overlay Operations
18.8 Network Analysis
18.9 Surface Analysis
18.10 Geostatistics
18.11 Geovisualization
19. Planning, Implementation, and Management of GIS
19.1 Introduction
19.2 Planning of Project
19.3 Implementation of Project
19.4 Management of Project
19.5 Keys for Successful GIS
19.6 Reasons for Unsuccessful GIS
20. Modern Trends of GIS
20.1 Introduction
20.2 Local to Global Concept in GIS
20.3 Increase in Dimensions in GIS
20.4 Linear to Non-linear Techniques in GIS
20.5 Development in Relation between Geometry and Algebra in GIS
20.6 Development of Common Techniques in GIS
20.7 Integration of GIS and Remote Sensing
20.8 Integration of GIS and Multimedia
20.9 3D GIS
20.9.1 Virtual Reality in GIS
20.10 Integration of 3D GIS and Web GIS
20.11 4D GIS and Real-time GIS
20.12 Mobile GIS
20.12.1 Mobile mapping
20.13 Collaborative GIS (CGIS)
21. Change Detection and Geosimulation
21.1 Visual change detection
21.2 Thresholding
21.3 Image difference
21.4 Image regression
21.5 Image ratioing
21.6 Vegetation index differencing
21.7 Principal component differencing
21.8 Multi-temporal image stock classification
21.9 Post classification comparison
21.10 Change vector analysis
21.12 Cellular automata simulation
21.13 Multi-agent simulation
21.14 ANN learning in simulation
Appendix A - Concept of Map, Coordinate System, and Projection
Appendix B - Concept on Mathematical TopicsNuméro de notice : 26518 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE/POSITIONNEMENT Nature : Manuel de cours DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97342 Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 26518-01 35.00 Livre Centre de documentation Télédétection Disponible Reference system origin and scale realization within the future GNSS constellation “Kepler” / Susanne Glaser in Journal of geodesy, vol 94 n° 12 (December 2020)
PermalinkGeodetic VLBI for precise orbit determination of Earth satellites: a simulation study / Grzegorz Klopotek in Journal of geodesy, vol 94 n° 6 (June 2020)
PermalinkPermalinkPermalink40 ans de géodésie à l'IGN (Institut Géographique National rebaptisé en 2012 Institut national de l'information géographique et forestière) : 1ère partie, la géodésie spatiale / Françoise Duquenne in XYZ, n° 161 (décembre 2019)
PermalinkTriple-frequency PPP ambiguity resolution with multi-constellation GNSS: BDS and Galileo / Xingxing Li in Journal of geodesy, vol 93 n° 8 (August 2019)
PermalinkMulti-dimensional particle filter-based estimation of inter-system phase biases for multi-GNSS real-time integer ambiguity resolution / Yumiao Tian in Journal of geodesy, vol 93 n°7 (July 2019)
PermalinkParallel computation of regional CORS network corrections based on ionospheric-free PPP / Linyang Li in GPS solutions, vol 23 n° 3 (July 2019)
PermalinkProcessing of GNSS constellations and ground station networks using the raw observation approach / Sebastian Strasser in Journal of geodesy, vol 93 n°7 (July 2019)
PermalinkPermalink