Descripteur
Termes IGN > sciences humaines et sociales > économie > macroéconomie > secteur tertiaire > service fondé sur la position
service fondé sur la positionSynonyme(s)service géolocalisé ;service basé sur la localisation LbsVoir aussi |
Documents disponibles dans cette catégorie (133)



Etendre la recherche sur niveau(x) vers le bas
Detecting individuals' spatial familiarity with urban environments using eye movement data / Hua Liao in Computers, Environment and Urban Systems, vol 93 (April 2022)
![]()
[article]
Titre : Detecting individuals' spatial familiarity with urban environments using eye movement data Type de document : Article/Communication Auteurs : Hua Liao, Auteur ; Wendi Zhao, Auteur ; Changbo Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101758 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse visuelle
[Termes IGN] apprentissage automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] navigation pédestre
[Termes IGN] oculométrie
[Termes IGN] service fondé sur la position
[Termes IGN] zone urbaine
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) The spatial familiarity of environments is an important high-level user context for location-based services (LBS). Knowing users' familiarity level of environments is helpful for enabling context-aware LBS that can automatically adapt information services according to users' familiarity with the environment. Unlike state-of-the-art studies that used questionnaires, sketch maps, mobile phone positioning (GPS) data, and social media data to measure spatial familiarity, this study explored the potential of a new type of sensory data - eye movement data - to infer users' spatial familiarity of environments using a machine learning approach. We collected 38 participants' eye movement data when they were performing map-based navigation tasks in familiar and unfamiliar urban environments. We trained and cross-validated a random forest classifier to infer whether the users were familiar or unfamiliar with the environments (i.e., binary classification). By combining basic statistical features and fixation semantic features, we achieved a best accuracy of 81% in a 10-fold classification and 70% in the leave-one-task-out (LOTO) classification. We found that the pupil diameter, fixation dispersion, saccade duration, fixation count and duration on the map were the most important features for detecting users' spatial familiarity. Our results indicate that detecting users' spatial familiarity from eye tracking data is feasible in map-based navigation and only a few seconds (e.g., 5 s) of eye movement data is sufficient for such detection. These results could be used to develop context-aware LBS that adapt their services to users' familiarity with the environments. Numéro de notice : A2022-121 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101758 Date de publication en ligne : 21/01/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101758 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99663
in Computers, Environment and Urban Systems > vol 93 (April 2022) . - n° 101758[article]Graph neural network based model for multi-behavior session-based recommendation / Bo Yu in Geoinformatica, vol 26 n° 2 (April 2022)
![]()
[article]
Titre : Graph neural network based model for multi-behavior session-based recommendation Type de document : Article/Communication Auteurs : Bo Yu, Auteur ; Ruoqian Zhang, Auteur ; Wei Chen, Auteur ; Junhua Fang, Auteur Année de publication : 2022 Article en page(s) : pp 429 - 447 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] comportement
[Termes IGN] consommation
[Termes IGN] modèle de simulation
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau sémantique
[Termes IGN] service fondé sur la positionMots-clés libres : session Résumé : (auteur) Multi-behavior session-based recommendation aims to predict the next item, such as a location-based service (LBS) or a product, to be interacted by a specific behavior type (e.g., buy or click) in a session involving multiple types of behaviors. State-of-the-art methods generally model multi-behavior dependencies in item-level, but ignore the potential of discovering useful patterns of multi-behavior transition through feature-level representation learning. Besides, sequential and non-sequential patterns should be properly fused in session modeling to capture dynamic interests within the session. To this end, this paper proposes a Graph Neural Network based Hybrid Model GNNH, which enables feature-level deeper representations of multi-behavior interaction sequences for session-based recommendation. Specifically, we first construct multi-relational item graph (MRIG) and feature graph (MRFG) based on session sequences. On top of the MRIG and MRFG, our model takes advantage of GNN to capture item and feature representations, such that global item-to-item and feature-to-feature relations are fully preserved. Afterwards, each multi-behavior session is modeled by a seamless fusion of interacted item and feature representations, where self-attention and mean-pooling are used to obtain sequential and non-sequential patterns simultaneously. Experiments on two real datasets show that the GNNH model significantly outperforms the state-of-the-art methods. Numéro de notice : A2022-326 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.1007/s10707-021-00439-w Date de publication en ligne : 29/05/2021 En ligne : https://doi.org/10.1007/s10707-021-00439-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100489
in Geoinformatica > vol 26 n° 2 (April 2022) . - pp 429 - 447[article]Quickly locating POIs in large datasets from descriptions based on improved address matching and compact qualitative representations / Ruozhen Cheng in Transactions in GIS, vol 26 n° 1 (February 2022)
![]()
[article]
Titre : Quickly locating POIs in large datasets from descriptions based on improved address matching and compact qualitative representations Type de document : Article/Communication Auteurs : Ruozhen Cheng, Auteur ; Jiaxin Liao, Auteur ; Jing Chen, Auteur Année de publication : 2022 Article en page(s) : pp 129 - 154 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement d'adresses
[Termes IGN] information sémantique
[Termes IGN] modèle d'ontologie
[Termes IGN] point d'intérêt
[Termes IGN] raisonnement spatial
[Termes IGN] relation spatiale
[Termes IGN] service fondé sur la position
[Termes IGN] similitude sémantiqueRésumé : (auteur) Locating points of interest (POIs) from descriptions can support intelligent location-based services. Available research achieves it through address matching and spatial reasoning. However, semantic characteristics and spatial proximities of address fields are usually neglected in address matching; current applications of spatial reasoning represent qualitative spatial relations in semantic networks for efficient queries, but they do not yet scale to large datasets for qualitative direction reasoning due to massive qualitative direction relations between objects; moreover, spatial reasoning on various quantitative distances should be optimized. This study proposes a method that improves the accuracy of address matching by combining multiple similarities and enables quick spatial reasoning through the faster relation retrieval of compact qualitative direction representations implemented on global equal latitude and longitude grids (ELLGs) and the ELLG-based quantitative calculations. The proposed method has been verified by two real-world datasets and proven to be efficient and accurate when locating POIs in large POI datasets from descriptions. Numéro de notice : A2022-177 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12838 Date de publication en ligne : 06/09/2021 En ligne : https://doi.org/10.1111/tgis.12838 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99834
in Transactions in GIS > vol 26 n° 1 (February 2022) . - pp 129 - 154[article]Automatic identification of addresses: A systematic literature review / Paula Cruz in ISPRS International journal of geo-information, vol 11 n° 1 (January 2022)
![]()
[article]
Titre : Automatic identification of addresses: A systematic literature review Type de document : Article/Communication Auteurs : Paula Cruz, Auteur ; Leonardo Vanneschi, Auteur ; Marco Painho, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 11 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement d'adresses
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] base de données d'adresses
[Termes IGN] géocodage par adresse postale
[Termes IGN] Geoparsing
[Termes IGN] service fondé sur la positionRésumé : (auteur) Address matching continues to play a central role at various levels, through geocoding and data integration from different sources, with a view to promote activities such as urban planning, location-based services, and the construction of databases like those used in census operations. However, the task of address matching continues to face several challenges, such as non-standard or incomplete address records or addresses written in more complex languages. In order to better understand how current limitations can be overcome, this paper conducted a systematic literature review focused on automated approaches to address matching and their evolution across time. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, resulting in a final set of 41 papers published between 2002 and 2021, the great majority of which are after 2017, with Chinese authors leading the way. The main findings revealed a consistent move from more traditional approaches to deep learning methods based on semantics, encoder-decoder architectures, and attention mechanisms, as well as the very recent adoption of hybrid approaches making an increased use of spatial constraints and entities. The adoption of evolutionary-based approaches and privacy preserving methods stand as some of the research gaps to address in future studies. Numéro de notice : A2022-088 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/ijgi11010011 Date de publication en ligne : 29/12/2021 En ligne : https://doi.org/10.3390/ijgi11010011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99497
in ISPRS International journal of geo-information > vol 11 n° 1 (January 2022) . - n° 11[article]Contextual location recommendation for location-based social networks by learning user intentions and contextual triggers / Seyyed Mohammadreza Rahimi in Geoinformatica, vol 26 n° 1 (January 2022)
![]()
[article]
Titre : Contextual location recommendation for location-based social networks by learning user intentions and contextual triggers Type de document : Article/Communication Auteurs : Seyyed Mohammadreza Rahimi, Auteur ; Behrouz Far, Auteur ; Xin Wang, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 28 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse spatiale
[Termes IGN] comportement
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] covariance
[Termes IGN] données spatiotemporelles
[Termes IGN] historique des données
[Termes IGN] interface web
[Termes IGN] mobilité territoriale
[Termes IGN] prise en compte du contexte
[Termes IGN] réseau social géodépendant
[Termes IGN] service fondé sur la position
[Termes IGN] système de recommandationRésumé : (auteur) Location recommendation methods suggest unvisited locations to their users. Many existing location recommendation methods focus on the spatial, social and temporal aspects of human movements. However, contextual information is also invaluable to location recommendation methods and has the great potential for explaining what triggers users to show different behaviors. CLR learns the response of the users to contextual variables based on their own history and the history of similar behaving users. In this paper, we propose a contextual location recommendation method named Contextual Location Recommendation (CLR) that learns the intention and spatial responses of users to various contextual triggers using the historical check-in and contextual information. CLR starts with a co-variance analysis to reduce dimensionality of the check-in data and then uses an optimized version of the random walk with restart to extract hidden user responses to contextual triggers. A tensor factorization is used to build a latent-factor model to predict the user’s intention response with the given set of contextual triggers. Based on the intention response of the user, a contextual spatial component identifies a set of matching locations accessible to the user by estimating the probability distribution of the location of the user and the popularity probability of locations under the contextual settings. Experimental results on three real-world datasets show that CLR improves the recommendation precision by 35% compared to the best-performing baseline recommendation method. Numéro de notice : A2022-203 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-021-00437-y Date de publication en ligne : 02/06/2021 En ligne : https://doi.org/10.1007/s10707-021-00437-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100008
in Geoinformatica > vol 26 n° 1 (January 2022) . - pp 1 - 28[article]Analytics of location-based big data for smart cities: Opportunities, challenges, and future directions / Haosheng Huang in Computers, Environment and Urban Systems, vol 90 (November 2021)
PermalinkExtracting 3D indoor maps with any shape accurately using building information modeling data / Qi Qiu in ISPRS International journal of geo-information, vol 10 n° 10 (October 2021)
PermalinkIdentifying home locations in human mobility data: an open-source R package for comparison and reproducibility / Qingqing Chen in International journal of geographical information science IJGIS, vol 35 n° 7 (July 2021)
PermalinkA BiLSTM-CNN model for predicting users’ next locations based on geotagged social media / Yi Bao in International journal of geographical information science IJGIS, vol 35 n° 4 (April 2021)
PermalinkPermalinkRoad network simplification for location-based services / Abdeltawab M. Hendawi in Geoinformatica, vol 24 n° 4 (October 2020)
PermalinkUrban Wi-Fi fingerprinting along a public transport route / Guenther Retscher in Journal of applied geodesy, vol 14 n° 4 (October 2020)
PermalinkImproved indoor positioning based on range-free RSSI fingerprint method / Marcin Uradzinski in Journal of geodetic science, vol 10 n° 1 (January 2020)
PermalinkEPLA : efficient personal location anonymity / Dapeng Zhao in Geoinformatica, vol 22 n° 1 (January 2018)
PermalinkNavigation des personnes aux moyens des technologies des smartphones et des données d’environnements cartographiés / Fadoua Taia Alaoui (2018)
Permalink