Descripteur
Documents disponibles dans cette catégorie (1827)


Etendre la recherche sur niveau(x) vers le bas
Resilient GNSS real-time kinematic precise positioning with inequality and equality constraints / Zhetao Zhang in GPS solutions, vol 27 n° 3 (July 2023)
![]()
[article]
Titre : Resilient GNSS real-time kinematic precise positioning with inequality and equality constraints Type de document : Article/Communication Auteurs : Zhetao Zhang, Auteur ; Yuan Li, Auteur ; Xiufeng He, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 116 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] contrainte d'intégrité
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] positionnement par GNSS
[Termes IGN] précision du positionnement
[Termes IGN] résolution d'ambiguïtéRésumé : (auteur) How to conduct the GNSS real-time kinematic precise positioning in challenging environments is not an easy problem. The challenging environment mainly refers to frequent signal reflection, refraction, diffraction, and occlusion, inevitably introducing large positioning errors. We propose a resilient positioning method considering the inequality and equality constraints. Specifically, first, we introduce the functional and stochastic models of real-time kinematic (RTK) positioning, considering the impacts of challenging environments. Second, specific iterative procedures of resilient GNSS precise positioning method with inequality and equality constraints are proposed. In addition, a general form of inequality constraints in terms of coordinate components is given that is suitable for real-time kinematic situations. Four 24-h real datasets in canyon environments were collected to verify the performance of the proposed method. The results show that compared with the traditional RTK positioning without inequality constraints, the proposed method can improve the success rates of ambiguity resolution by 42.2% on average. Also, the positioning accuracy of fixed solutions can be improved significantly after applying the proposed method, where the root mean square errors can be reduced by 77.2% on average. Therefore, the proposed method can significantly improve success rates of ambiguity resolution and positioning accuracy, which is especially promising in challenging environments. Numéro de notice : A2023-213 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-023-01454-0 Date de publication en ligne : 26/04/2023 En ligne : https://doi.org/10.1007/s10291-023-01454-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103142
in GPS solutions > vol 27 n° 3 (July 2023) . - n° 116[article]
[article]
Titre : Ambiguity resolution method using BDS/INS model Type de document : Article/Communication Auteurs : F. Wu, Auteur ; J. Zhao, Auteur ; J. Xue, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 274 - 284 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] BDS-INS
[Termes IGN] correction atmosphérique
[Termes IGN] ligne de base
[Termes IGN] modèle atmosphérique
[Termes IGN] navigation inertielle
[Termes IGN] positionnement par BeiDou
[Termes IGN] résolution d'ambiguïtéRésumé : (auteur) Due to the highly dynamic changes of the environment, the frequent loss of signal will seriously reduce the accuracy of realtime dynamic positioning. Meanwhile, the ambiguity resolution for medium/long baseline is more affected by atmospheric delay. To solve this problem, an Inertial Navigation System (INS) assisted Beidou Navigation System (BDS) medium/long baseline partial ambiguity resolution (PAR) method is designed. Firstly, constructing the BDS/INS tight integrated system that uses INS provided initial information to ambiguity resolution when the signal outages. Secondly, the atmospheric delay constraint is introduced to improve the precision of float ambiguity. Finally, the PAR based on the elevation angle information is applied to enhance fixed speed and accuracy. The vehicle experiments show that the proposed algorithm can quickly fix the ambiguity of medium/long baseline when the satellite signal outages for a short time, and improve the positioning accuracy of medium/long baseline in the dynamic environment. Numéro de notice : A2023-192 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2022.2089822 Date de publication en ligne : 28/06/2022 En ligne : https://doi.org/10.1080/00396265.2022.2089822 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103067
in Survey review > vol 55 n° 390 (May 2023) . - pp 274 - 284[article]GRGS numerical simulations for a GRASP-like mission: A way to reach the GGOS goal for terrestrial reference frame / Arnaud Pollet in Journal of geodesy, vol 97 n° 5 (May 2023)
![]()
[article]
Titre : GRGS numerical simulations for a GRASP-like mission: A way to reach the GGOS goal for terrestrial reference frame Type de document : Article/Communication Auteurs : Arnaud Pollet , Auteur ; David Coulot
, Auteur ; Richard Biancale, Auteur ; Felix Perozans, Auteur ; Sylvain Loyer, Auteur ; J.C. Marty, Auteur ; Susanne Glaser, Auteur ; Vladimir Schott-Guilmault, Auteur ; Jean-Michel Lemoine, Auteur ; Flavien Mercier, Auteur ; Samuel Nahmani
, Auteur ; Mioara Mandea, Auteur
Année de publication : 2023 Article en page(s) : n° 45 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] International DORIS Service
[Termes IGN] mission spatiale
[Termes IGN] orbitographie
[Termes IGN] positionnement par ITGB
[Termes IGN] positionnement par télémétrie laser sur satellite
[Termes IGN] repère de référenceRésumé : (auteur) In 2009, the geoscience community has fixed an objective of 1 mm accuracy and 0.1 mm/yr stability for the terrestrial reference frame (TRF) realization (Global Geodetic Observing System, GGOS, Meeting the Requirements of a Global Society on a Changing Planet in 2020, Plag and Pearlman in Global geodetic observing system: meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin, 2009. https://doi.org/10.1007/978-3-642-02687-4). This accuracy and stability are needed for diversified studies like climate change, tectonic sciences and more generally any geoscience requiring the use of an accurate and precise TRF. Unfortunately, they are still not reached by the last International Terrestrial Reference Frame. To reach this goal, the use of “multi-technique” satellites as “space-ties” has been studied since 2011 and a few proposals have been made in response to different space agency calls: the Geodetic Reference Antenna in Space (GRASP) mission—NASA Earth Venture 2 call, Eratosthenes-GRASP (E-GRASP)—ESA Earth Explorer 9 (EE9) call, MOBILE—ESA EE10 call, MARVEL—CNES Séminaire de Prospective Scientifique 2019). In this article, we present the numerical simulations carried out by the French Groupe de Recherche de Géodésie Spatiale (GRGS) for the E-GRASP proposal in response to the ESA EE-9 call and their improvements carried out afterwards. These simulations aim to answer three different questions:
Is it possible to reach the GGOS requirements for the TRF with the measurements of a GRASP-like satellite like E-GRASP alone?
If it is possible, which level of accuracy for the positioning of the on-board antennas is needed?
What is the minimal lifetime of a E-GRASP mission to reach the GGOS requirements?
The results of these simulations show that a E-GRASP satellite can allow us to reach, after five years, an accuracy close to 1 mm and a stability better than 0.1 mm/yr for the TRF. However, it is necessary to ensure a positioning better than 1 mm for the on-board antennas. We therefore encourage the new ESA GENESIS mission proposal, accepted during the ESA last Ministerial meeting on 23rd November 2022, which takes up the concept of a GRASP-type satellite.Numéro de notice : A2023-227 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-023-01730-4 Date de publication en ligne : 15/05/2023 En ligne : https://doi.org/10.1007/s00190-023-01730-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103247
in Journal of geodesy > vol 97 n° 5 (May 2023) . - n° 45[article]Investigation into the nonlinear Kalman filter to correct the INS/GNSS integrated navigation system / Konstantin Neusypin in GPS solutions, vol 27 n° 2 (April 2023)
![]()
[article]
Titre : Investigation into the nonlinear Kalman filter to correct the INS/GNSS integrated navigation system Type de document : Article/Communication Auteurs : Konstantin Neusypin, Auteur ; Andrey Kupriyanov, Auteur ; Andrey Maslennikov, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 91 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] couplage GNSS-INS
[Termes IGN] filtrage non linéaire
[Termes IGN] filtre adaptatif
[Termes IGN] filtre de Kalman
[Termes IGN] modèle d'erreur
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] système de navigationRésumé : (auteur) The integrated navigation system is the inertial navigation system (INS), corrected by global navigation satellite system (GNSS) data. The correction could be done algorithmically by utilizing nonlinear Kalman filtering (NKF). In practice, the NKF uses an INS error model as an a priori model that is not always adequate to handle the dynamics of the true and unknown INS error model. To eliminate such modeling errors, we propose a new INS/GPS correction approach with modified adaptive NKF. In the proposed NKF, instead of the a priori model, the model constructed during the pre-flight test for a particular INS is used. To realize this, the full algorithm includes an INS error model construction algorithm, a way of reduced measurement generation, and criteria for divergence detection. INS error model construction both during pre-flight test and during flight is done by the group method of data handling (GMDH). Flight experiments were performed for an empirical study of the INS error model and its effect on the total accuracy of computed navigational data. The navigational equipment was installed on the balloon—an airborne radio-transparent object. The results of the experiments validate the effectiveness and accuracy of the proposed INS/GPS correction approach. Numéro de notice : A2022-182 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-023-01433-5 Date de publication en ligne : 21/03/2023 En ligne : https://doi.org/10.1007/s10291-023-01433-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102951
in GPS solutions > vol 27 n° 2 (April 2023) . - n° 91[article]Parallel Computation of Multi-GNSS and Multi-Frequency Inter-Frequency Clock Biases and Observable-Specific Biases / Linyang Li in Remote sensing, vol 15 n° 7 (April-1 2023)
![]()
[article]
Titre : Parallel Computation of Multi-GNSS and Multi-Frequency Inter-Frequency Clock Biases and Observable-Specific Biases Type de document : Article/Communication Auteurs : Linyang Li, Auteur ; Zhen Yang, Auteur ; Zhen Jia, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 1953 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] erreur de phase
[Termes IGN] erreur systématique interfréquence d'horloge
[Termes IGN] fréquence multiple
[Termes IGN] positionnement par GLONASS
[Termes IGN] positionnement par GPS
[Termes IGN] positionnement ponctuel précisRésumé : (auteur) With the widespread application of GNSS, the delicate handling of biases among different systems and different frequencies is of critical importance, wherein the inter-frequency clock biases (IFCBs) and observable-specific signal biases (OSBs) should be carefully corrected. Usually, a serial approach is used to calculate these products. To accelerate the computation speed and reduce the time delay, a multicore parallel estimation strategy for IFCBs, code, and phase OSBs by utilizing task parallel library (TPL) is proposed, the parallel computations, including precise point positioning (PPP), IFCBs, and OSBs estimation, being carried out on the basis of data parallelisms and task-based asynchronous programming. Three weeks of observables from the multi-GNSS experiment campaign (MGEX) network is utilized. The result shows that the IFCB errors of GPS Block IIF and GLONASS M+ satellites are nonnegligible, in which the GLONASS M+ satellite R21 shows the largest IFCB of more than 0.60 m, while those of other systems and frequencies are marginal, and the code OSBs present excellent stability with a standard deviation (STD) of 0.10 ns for GPS and approximately 0.20 ns for other satellite systems. Besides, the phase OSBs of all systems show the stability of better than 0.10 ns, wherein the Galileo satellites show the best performance of 0.01 ns. Compared with the single-core serial computing method, the acceleration rates for IFCBs and OSBs estimation are 3.10, 5.53, 9.66, and 17.04 times higher using four, eight, sixteen, and thirty-two physical cores, respectively, through multi-core parallelized execution. Numéro de notice : A2023-220 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.3390/rs15071953 Date de publication en ligne : 06/04/2023 En ligne : https://doi.org/10.3390/rs15071953 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103163
in Remote sensing > vol 15 n° 7 (April-1 2023) . - n° 1953[article]Improved GPS-based single-frequency orbit determination for the CYGNSS spacecraft using GipsyX / Alex V. Conrad in Navigation : journal of the Institute of navigation, vol 70 n° 1 (Spring 2023)
PermalinkThe importance of co-located VLBI Intensive stations and GNSS receivers / Christopher Dieck in Journal of geodesy, vol 97 n° 3 (March 2023)
PermalinkBDS-3 precise orbit and clock solution at Wuhan University: status and improvement / Jing Guo in Journal of geodesy, vol 97 n° 2 (February 2023)
PermalinkCoastal GNSS-R phase altimetry based on the combination of L1 and L5 signals under high sea states / Yunqiao He in Journal of geodesy, vol 97 n° 2 (February 2023)
PermalinkUndifferenced and uncombined GNSS time and frequency transfer with integer ambiguity resolution / Xiaolong Mi in Journal of geodesy, vol 97 n° 2 (February 2023)
PermalinkAn extended inter-system biases model for multi-GNSS precise point positioning / Xuexi Liu in Measurement, vol 206 (January 2023)
PermalinkAutonomous coordinate establishment of local reference frames for ground-based positioning systems without known points / Tengfei Wang in Journal of geodesy, vol 97 n° 1 (January 2023)
PermalinkBDS and GPS side-lobe observation quality analysis and orbit determination with a GEO satellite onboard receiver / Wenwen Li in GPS solutions, vol 27 n° 1 (January 2023)
PermalinkIn-camera IMU angular data for orthophoto projection in underwater photogrammetry / Erica Nocerino in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 7 (January 2023)
PermalinkMultipath mitigation for improving GPS narrow-lane uncalibrated phase delay estimation and speeding up PPP ambiguity resolution / Kai Zheng in Measurement, vol 206 (January 2023)
Permalink