Descripteur
Documents disponibles dans cette catégorie (95)



Etendre la recherche sur niveau(x) vers le bas
Tree position estimation from TLS data using hough transform and robust least-squares circle fitting / Maja Michałowska in Remote Sensing Applications: Society and Environment, RSASE, vol 29 (January 2023)
![]()
[article]
Titre : Tree position estimation from TLS data using hough transform and robust least-squares circle fitting Type de document : Article/Communication Auteurs : Maja Michałowska, Auteur ; Jacek Rapinski, Auteur ; Joanna Janicka, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 100863 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] branche (arbre)
[Termes IGN] compensation par moindres carrés
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] filtrage du bruit
[Termes IGN] géolocalisation
[Termes IGN] méthode robuste
[Termes IGN] modèle numérique de terrain
[Termes IGN] Pologne
[Termes IGN] semis de points
[Termes IGN] transformation de HoughRésumé : (auteur) Forest management and planning require information regarding the current state of the forest. Remote sensing techniques allow to obtain geospatial data, also for the forestry sector. As one of the remote-sensed technologies datasets, Terrestrial Laser Scanning data is widely used to derive detailed information about tree and forest stand parameters. This article presents the combination of circular Hough transform, denoising procedure, and robust least-square circle fitting method to extract stem positions from Terrestrial Laser Scanning data. In the proposed approach, initial tree stems position was detected with circular Hough transform. Then, obtained results were denoised to exclude most non-tree trunk points and analyze three-dimensional data from laser scanning to find exact circular tree stems with a robust least-square circle fitting method. The developed algorithm is effective in obtaining the trees’ geodetic positions from laser scanning data. The results generated in this study can be used as basics for further automatic determination of tree characteristics, such as tree species, height, or crown range. In this study, 94.8% tree stems delineation was generated with a mean accuracy of 87.2%, 1.64 cm of root mean square error for stem position, and 1.15 cm for tree radius measured at ground level. The process conducted in this research can be used to detect other circle-shaped objects, such as lamps or power towers, for which obtaining dense Terrestrial Laser Scanning data is available. The detected positions of these objects can power the geographic information systems or thematic industry systems, where it is necessary to determine the geodetic object position results from legal regulations. Numéro de notice : A2023-018 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rsase.2022.100863 Date de publication en ligne : 04/11/2022 En ligne : https://doi.org/10.1016/j.rsase.2022.100863 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102183
in Remote Sensing Applications: Society and Environment, RSASE > vol 29 (January 2023) . - n° 100863[article]Research on machine intelligent perception of urban geographic location based on high resolution remote sensing images / Jun Chen in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 4 (April 2022)
![]()
[article]
Titre : Research on machine intelligent perception of urban geographic location based on high resolution remote sensing images Type de document : Article/Communication Auteurs : Jun Chen, Auteur ; Cunjian Yang, Auteur ; Zengyang Yu, Auteur Année de publication : 2022 Article en page(s) : pp 223 - 231 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] base de données
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] cognition
[Termes IGN] détection d'objet
[Termes IGN] extraction automatique
[Termes IGN] géolocalisation
[Termes IGN] image à haute résolution
[Termes IGN] intelligence artificielle
[Termes IGN] reconnaissance automatique
[Termes IGN] zone urbaineRésumé : (auteur) Machine intelligent perception (MIP) provides a novel way for human beings to recognize geographical locations automatically. MIP of geographical locations enables computers to describe locations automatically and quantitatively by extracting Earth's surface features and building relationships. The earth surface fingerprint is established here by mining the relationship between spatial objects with stable characteristics extracted from urban high-resolution remote sensing images, which realizes intelligent perception of geographical location innovatively. Mask Region-based Convolutional Neural Network is used to automatically extract the spatial objects such as playgrounds, crossroads, and bridges from the images. Then, the extracted spatial objects are encoded according to the landuse type, distance, and angle of 24 nearest objects to construct urban surface fingerprint database. The urban surface fingerprint database is used to match the geographical location of spatial objects in local images so that the matching algorithm can be used for machine recognition of the geographical location of specific objects in the target image. Taking the main cities in China as the experimental area, the success rate of location perception is 92%. We have made a useful exploration in the field of MIP of geographical location, hoping to promote the development of human cognition of geographical location. Numéro de notice : A2022-285 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00017R3 Date de publication en ligne : 04/04/2022 En ligne : https://doi.org/10.14358/PERS.21-00017R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100319
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 4 (April 2022) . - pp 223 - 231[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022041 SL Revue Centre de documentation Revues en salle Disponible ALEGORIA: Joint multimodal search and spatial navigation into the geographic iconographic heritage / Florent Geniet (2022)
![]()
Titre : ALEGORIA: Joint multimodal search and spatial navigation into the geographic iconographic heritage Type de document : Article/Communication Auteurs : Florent Geniet, Auteur ; Valérie Gouet-Brunet , Auteur ; Mathieu Brédif
, Auteur
Editeur : New York [Etats-Unis] : Association for computing machinery ACM Année de publication : 2022 Projets : Alegoria / Gouet-Brunet, Valérie Conférence : MM 2022, 30th ACM International Conference on Multimedia 10/10/2022 14/10/2022 Lisbonne Portugal Proceedings ACM Importance : pp 6982 - 6984 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] géolocalisation
[Termes IGN] image ancienne
[Termes IGN] moteur de recherche
[Termes IGN] photographie aérienne oblique
[Termes IGN] plateforme logicielle
[Termes IGN] visualisation 3DRésumé : (auteur) In this article, we present two online platforms developed for the structuring and valorization of old geographical iconographic collections: a multimodal search engine for their indexing, retrieval and interlinking, and a 3D navigation platform for their visualization in spatial context. In particular, we show how the joint use of these functionalities, guided by geolocation, brings structure and knowledge to the manipulated collections. In the demonstrator, they consist of 54,000 oblique aerial photographs from several French providers (national archives, a museum and a mapping agency). Numéro de notice : C2022-042 Affiliation des auteurs : UGE-LASTIG (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE/IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1145/3503161.3547746 Date de publication en ligne : 10/10/2022 En ligne : https://doi.org/10.1145/3503161.3547746 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101906 Annotation sémantique pour la géolocalisation d'entités spatiales dans des tweets / Gaëtan Caillaut (2022)
![]()
Titre : Annotation sémantique pour la géolocalisation d'entités spatiales dans des tweets Type de document : Article/Communication Auteurs : Gaëtan Caillaut, Auteur ; Cécile Gracianne, Auteur ; Samuel Auclair, Auteur ; Nathalie Abadie , Auteur ; Guillaume Touya
, Auteur
Editeur : Orsay, Chambéry : Association Française de l'Intelligence Artificielle AFIA Année de publication : 2022 Projets : RéSoCio / Auclair, Samuel Conférence : PFIA 2022, Plate-Forme Intelligence Artificielle, Journée Résilience & IA 27/06/2022 27/06/2022 Saint-Etienne France Programme Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] entité géographique
[Termes IGN] géolocalisation
[Termes IGN] information sémantique
[Termes IGN] représentation vectorielle
[Termes IGN] Twitter
[Termes IGN] zone sinistréeRésumé : (Auteur) Cet article présente une méthode d'annotation sémantique (Entity Linking) dédiée à la géolocalisation de messages postés sur les réseaux sociaux. Nous proposons une variante de l'architecture à double encodeur capable de détecter simultanément les mentions des entités présentes dans un texte et d'en calculer des représentations vectorielles ; là où les travaux récents menés dans ce domaine ne proposent que des systèmes capable de produire une représentation pour une unique entité annotée au préalable par un système tiers. Nous montrons également que, malgré la difficulté accrue de la tâche, ce système parvient à concurrencer, et même à surpasser, les systèmes à double encodeur. Numéro de notice : C2022-012 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : https://hal.inrae.fr/IGN-ENSG/hal-03682484v1 Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Communication nature-HAL : ComSansActesPubliés-Unpublished DOI : sans Date de publication en ligne : 31/05/2022 En ligne : https://hal.science/hal-03682484v1 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100827 Automated construction of a French Entity Linking dataset to geolocate social network posts in the context of natural disasters / Gaëtan Caillaut (2022)
![]()
Titre : Automated construction of a French Entity Linking dataset to geolocate social network posts in the context of natural disasters Type de document : Article/Communication Auteurs : Gaëtan Caillaut, Auteur ; Cécile Gracianne, Auteur ; Nathalie Abadie , Auteur ; Guillaume Touya
, Auteur ; Samuel Auclair, Auteur
Editeur : Tarbes [France] : ISCRAM proceedings Année de publication : 2022 Conférence : ISCRAM 2022, 19th International Conference on Information Systems for Crisis Response and Management 22/05/2022 25/05/2022 Tarbes France OA Proceedings Projets : RéSoCio / Auclair, Samuel Importance : 11 p. Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] catastrophe naturelle
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] extraction automatique
[Termes IGN] géolocalisation
[Termes IGN] gestion de crise
[Termes IGN] traitement du langage naturel
[Termes IGN] TwitterRésumé : (Auteur) During natural disasters, automatic information extraction from Twitter posts is a valuable way to get a better overview of the field situation. This information has to be geolocated to support effective actions, but for the vast majority of tweets, spatial information has to be extracted from texts content. Despite the remarkable advances of the Natural Language Processing field, this task is still challenging for current state-of-the-art models because they are not necessarily trained on Twitter data and because high quality annotated data are still lacking for low resources languages. This research in progress address this gap describing an analytic pipeline able to automatically extract geolocatable entities from texts and to annotate them by aligning them with the entities present in Wikipedia/Wikidata resources. We present a new dataset for Entity Linking on French texts as preliminary results, and discuss research perspectives for enhancements over current state-of-the-art modeling for this task. Numéro de notice : C2022-005 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : sans Date de publication en ligne : 05/04/2022 En ligne : https://hal.science/hal-03631387v1 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100410 CIME: Context-aware geolocation of emergency-related posts / Gabriele Scalia in Geoinformatica, vol 26 n° 1 (January 2022)
PermalinkThe geography of social media data in urban areas: Representativeness and complementarity / Alvaro Bernabeu-Bautista in ISPRS International journal of geo-information, vol 10 n° 11 (November 2021)
PermalinkRoad-network-based fast geolocalization / Yongfei Li in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
PermalinkConstructing and analyzing spatial-social networks from location-based social media data / Xuebin Wei in Cartography and Geographic Information Science, vol 48 n° 3 (May 2021)
PermalinkUnderstanding collective human movement dynamics during large-scale events using big geosocial data analytics / Junchuan Fan in Computers, Environment and Urban Systems, vol 87 (May 2021)
PermalinkEnjeux et méthodes d’un liage de référentiels géographiques : l’exemple du projet de recherche ALEGORIA / Clara Lelièvre (2021)
PermalinkÉvaluation et spatialisation du potentiel offert par les moyens d'alerte centrés sur la localisation des individus / Esteban Bopp (2021)
PermalinkPermalinkPermalinkProbabilistic positioning in mobile phone network and its consequences for the privacy of mobility data / Aleksey Ogulenko in Computers, Environment and Urban Systems, vol 85 (January 2021)
Permalink