Descripteur
Documents disponibles dans cette catégorie (94)



Etendre la recherche sur niveau(x) vers le bas
Research on machine intelligent perception of urban geographic location based on high resolution remote sensing images / Jun Chen in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 4 (April 2022)
![]()
[article]
Titre : Research on machine intelligent perception of urban geographic location based on high resolution remote sensing images Type de document : Article/Communication Auteurs : Jun Chen, Auteur ; Cunjian Yang, Auteur ; Zengyang Yu, Auteur Année de publication : 2022 Article en page(s) : pp 223 - 231 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] base de données
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] cognition
[Termes IGN] détection d'objet
[Termes IGN] extraction automatique
[Termes IGN] géolocalisation
[Termes IGN] image à haute résolution
[Termes IGN] intelligence artificielle
[Termes IGN] reconnaissance automatique
[Termes IGN] zone urbaineRésumé : (auteur) Machine intelligent perception (MIP) provides a novel way for human beings to recognize geographical locations automatically. MIP of geographical locations enables computers to describe locations automatically and quantitatively by extracting Earth's surface features and building relationships. The earth surface fingerprint is established here by mining the relationship between spatial objects with stable characteristics extracted from urban high-resolution remote sensing images, which realizes intelligent perception of geographical location innovatively. Mask Region-based Convolutional Neural Network is used to automatically extract the spatial objects such as playgrounds, crossroads, and bridges from the images. Then, the extracted spatial objects are encoded according to the landuse type, distance, and angle of 24 nearest objects to construct urban surface fingerprint database. The urban surface fingerprint database is used to match the geographical location of spatial objects in local images so that the matching algorithm can be used for machine recognition of the geographical location of specific objects in the target image. Taking the main cities in China as the experimental area, the success rate of location perception is 92%. We have made a useful exploration in the field of MIP of geographical location, hoping to promote the development of human cognition of geographical location. Numéro de notice : A2022-285 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00017R3 Date de publication en ligne : 04/04/2022 En ligne : https://doi.org/10.14358/PERS.21-00017R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100319
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 4 (April 2022) . - pp 223 - 231[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022041 SL Revue Centre de documentation Revues en salle Disponible Annotation sémantique pour la géolocalisation d'entités spatiales dans des tweets / Gaëtan Caillaut (2022)
![]()
Titre : Annotation sémantique pour la géolocalisation d'entités spatiales dans des tweets Type de document : Article/Communication Auteurs : Gaëtan Caillaut, Auteur ; Cécile Gracianne, Auteur ; Samuel Auclair, Auteur ; Nathalie Abadie , Auteur ; Guillaume Touya
, Auteur
Editeur : Orsay, Chambéry : Association Française de l'Intelligence Artificielle AFIA Année de publication : 2022 Projets : RéSoCio / Auclair, Samuel Conférence : PFIA 2022, Plate-Forme Intelligence Artificielle, Journée Résilience & IA 27/06/2022 27/06/2022 Saint-Etienne France Programme Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] entité géographique
[Termes IGN] géolocalisation
[Termes IGN] information sémantique
[Termes IGN] représentation vectorielle
[Termes IGN] Twitter
[Termes IGN] zone sinistréeMots-clés libres : Annotation sémantique, Reconnaissance d’entités nommées, Double Encodeur, Wikipédia, Géolocalisation Résumé : (Auteur) Cet article présente une méthode d'annotation sémantique (Entity Linking) dédiée à la géolocalisation de messages postés sur les réseaux sociaux. Nous proposons une variante de l'architecture à double encodeur capable de détecter simultanément les mentions des entités présentes dans un texte et d'en calculer des représentations vectorielles ; là où les travaux récents menés dans ce domaine ne proposent que des systèmes capable de produire une représentation pour une unique entité annotée au préalable par un système tiers. Nous montrons également que, malgré la difficulté accrue de la tâche, ce système parvient à concurrencer, et même à surpasser, les systèmes à double encodeur. Numéro de notice : C2022-012 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Communication nature-HAL : ComSansActesPubliés-Unpublished DOI : sans Date de publication en ligne : 31/05/2022 En ligne : https://hal.archives-ouvertes.fr/hal-03682484/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100827 Automated construction of a French Entity Linking dataset to geolocate social network posts in the context of natural disasters / Gaëtan Caillaut (2022)
![]()
Titre : Automated construction of a French Entity Linking dataset to geolocate social network posts in the context of natural disasters Type de document : Article/Communication Auteurs : Gaëtan Caillaut, Auteur ; Cécile Gracianne, Auteur ; Nathalie Abadie , Auteur ; Guillaume Touya
, Auteur ; Samuel Auclair, Auteur
Editeur : Tarbes [France] : ISCRAM proceedings Année de publication : 2022 Conférence : ISCRAM 2022, 19th International Conference on Information Systems for Crisis Response and Management 22/05/2022 25/05/2022 Tarbes France OA Proceedings Projets : RéSoCio / Auclair, Samuel Importance : 11 p. Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] catastrophe naturelle
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] extraction automatique
[Termes IGN] géolocalisation
[Termes IGN] gestion de crise
[Termes IGN] traitement du langage naturel
[Termes IGN] TwitterRésumé : (Auteur) During natural disasters, automatic information extraction from Twitter posts is a valuable way to get a better overview of the field situation. This information has to be geolocated to support effective actions, but for the vast majority of tweets, spatial information has to be extracted from texts content. Despite the remarkable advances of the Natural Language Processing field, this task is still challenging for current state-of-the-art models because they are not necessarily trained on Twitter data and because high quality annotated data are still lacking for low resources languages. This research in progress address this gap describing an analytic pipeline able to automatically extract geolocatable entities from texts and to annotate them by aligning them with the entities present in Wikipedia/Wikidata resources. We present a new dataset for Entity Linking on French texts as preliminary results, and discuss research perspectives for enhancements over current state-of-the-art modeling for this task. Numéro de notice : C2022-005 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : sans Date de publication en ligne : 05/04/2022 En ligne : https://hal.archives-ouvertes.fr/hal-03631387/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100410 CIME: Context-aware geolocation of emergency-related posts / Gabriele Scalia in Geoinformatica [en ligne], vol 26 n° 1 (January 2022)
![]()
[article]
Titre : CIME: Context-aware geolocation of emergency-related posts Type de document : Article/Communication Auteurs : Gabriele Scalia, Auteur ; Chiara Francalanci, Auteur ; Barbara Pernici, Auteur Année de publication : 2022 Article en page(s) : pp 125 - 157 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] cartographie d'urgence
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] exploration de données
[Termes IGN] géolocalisation
[Termes IGN] géoréférencement
[Termes IGN] Grande-Bretagne
[Termes IGN] implémentation (informatique)
[Termes IGN] inondation
[Termes IGN] New York (Etats-Unis ; ville)
[Termes IGN] prise en compte du contexte
[Termes IGN] tempête
[Termes IGN] TwitterRésumé : (auteur) Information extracted from social media has proven to be very useful in the domain of emergency management. An important task in emergency management is rapid crisis mapping, which aims to produce timely and reliable maps of affected areas. During an emergency, the volume of emergency-related posts is typically large, but only a small fraction is relevant and help rapid mapping effectively. Furthermore, posts are not useful for mapping purposes unless they are correctly geolocated and, on average, less than 2% of posts are natively georeferenced. This paper presents an algorithm, called CIME, that aims to identify and geolocate emergency-related posts that are relevant for mapping purposes. While native geocoordinates are most often missing, many posts contain geographical references in their metadata, such as texts or links that can be used by CIME to filter and geolocate information. In addition, social media creates a social network and each post can be enhanced with indirect information from the post’s network of relationships with other posts (for example, a retweet can be associated with other geographical references which are useful to geolocate the original tweet). To exploit all this information, CIME uses the concept of context, defined as the information characterizing a post both directly (the post’s metadata) and indirectly (the post’s network of relationships). The algorithm was evaluated on a recent major emergency event demonstrating better performance with respect to the state of the art in terms of total number of geolocated posts, geolocation accuracy and relevance for rapid mapping. Numéro de notice : A2022-204 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-021-00446-x Date de publication en ligne : 28/07/2021 En ligne : https://doi.org/10.1007/s10707-021-00446-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100011
in Geoinformatica [en ligne] > vol 26 n° 1 (January 2022) . - pp 125 - 157[article]The geography of social media data in urban areas: Representativeness and complementarity / Alvaro Bernabeu-Bautista in ISPRS International journal of geo-information, vol 10 n° 11 (November 2021)
![]()
[article]
Titre : The geography of social media data in urban areas: Representativeness and complementarity Type de document : Article/Communication Auteurs : Alvaro Bernabeu-Bautista, Auteur ; Leticia Serrano-Estrada, Auteur ; V. Raul Perez-Sanchez, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 747 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse socio-économique
[Termes IGN] analyse spatiale
[Termes IGN] données démographiques
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données massives
[Termes IGN] données socio-économiques
[Termes IGN] géolocalisation
[Termes IGN] réseau social géodépendant
[Termes IGN] Valence (Espagne)
[Termes IGN] zone urbaineRésumé : (auteur) This research sheds light on the relationship between the presence of location-based social network (LBSN) data and other economic and demographic variables in the city of Valencia (Spain). For that purpose, a comparison is made between location patterns of geolocated data from various social networks (i.e., Google Places, Foursquare, Twitter, Airbnb and Idealista) and statistical information such as land value, average gross income, and population distribution by age range. The main findings show that there is no direct relationship between land value or age of registered population and the amount of social network data generated in a given area. However, a noteworthy coincidence was observed between Google Places data-clustering patterns, which represent the offer of economic activities, and the spatial concentration of the other LBSNs analyzed, suggesting that data from these sources are mostly generated in areas with a high density of economic activities. Numéro de notice : A2021-828 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10110747 Date de publication en ligne : 03/11/2021 En ligne : https://doi.org/10.3390/ijgi10110747 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98965
in ISPRS International journal of geo-information > vol 10 n° 11 (November 2021) . - n° 747[article]Road-network-based fast geolocalization / Yongfei Li in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
PermalinkConstructing and analyzing spatial-social networks from location-based social media data / Xuebin Wei in Cartography and Geographic Information Science, vol 48 n° 3 (May 2021)
PermalinkUnderstanding collective human movement dynamics during large-scale events using big geosocial data analytics / Junchuan Fan in Computers, Environment and Urban Systems, vol 87 (May 2021)
PermalinkEnjeux et méthodes d’un liage de référentiels géographiques : l’exemple du projet de recherche ALEGORIA / Clara Lelièvre (2021)
PermalinkÉvaluation et spatialisation du potentiel offert par les moyens d'alerte centrés sur la localisation des individus / Esteban Bopp (2021)
PermalinkPermalinkPermalinkProbabilistic positioning in mobile phone network and its consequences for the privacy of mobility data / Aleksey Ogulenko in Computers, Environment and Urban Systems, vol 85 (January 2021)
PermalinkSherloc: a knowledge-driven algorithm for geolocating microblog messages at sub-city level / Laura Di Rocco in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
PermalinkExploring the heterogeneity of human urban movements using geo-tagged tweets / Ding Ma in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
Permalink