Descripteur
Documents disponibles dans cette catégorie (748)


Etendre la recherche sur niveau(x) vers le bas
Narrative cartography with knowledge graphs / Gengchen Mai in Journal of Geovisualization and Spatial Analysis, vol 6 n° 1 (June 2022)
![]()
[article]
Titre : Narrative cartography with knowledge graphs Type de document : Article/Communication Auteurs : Gengchen Mai, Auteur ; Weiming Huang, Auteur ; Ling Cai, Auteur ; et al., Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] ArcGIS
[Termes IGN] cartographie ancienne
[Termes IGN] cartographie par internet
[Termes IGN] données spatiotemporelles
[Termes IGN] géovisualisation
[Termes IGN] modèle d'ontologie
[Termes IGN] ontologie
[Termes IGN] réseau sémantique
[Termes IGN] SPARQL
[Termes IGN] système d'information géographique
[Termes IGN] web sémantiqueRésumé : (auteur) Narrative cartography is a discipline which studies the interwoven nature of stories and maps. However, conventional geovisualization techniques of narratives often encounter several prominent challenges, including the data acquisition & integration challenge and the semantic challenge. To tackle these challenges, in this paper, we propose the idea of narrative cartography with knowledge graphs (KGs). Firstly, to tackle the data acquisition & integration challenge, we develop a set of KG-based GeoEnrichment toolboxes to allow users to search and retrieve relevant data from integrated cross-domain knowledge graphs for narrative mapping from within a GISystem. With the help of this tool, the retrieved data from KGs are directly materialized in a GIS format which is ready for spatial analysis and mapping. Two use cases — Magellan’s expedition and World War II — are presented to show the effectiveness of this approach. In the meantime, several limitations are identified from this approach, such as data incompleteness, semantic incompatibility, and the semantic challenge in geovisualization. For the later two limitations, we propose a modular ontology for narrative cartography, which formalizes both the map content (Map Content Module) and the geovisualization process (Cartography Module). We demonstrate that, by representing both the map content and the geovisualization process in KGs (an ontology), we can realize both data reusability and map reproducibility for narrative cartography. Numéro de notice : A2022-182 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s41651-021-00097-4 Date de publication en ligne : 02/02/2022 En ligne : https://doi.org/10.1007/s41651-021-00097-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99869
in Journal of Geovisualization and Spatial Analysis > vol 6 n° 1 (June 2022)[article]GIS-KG: building a large-scale hierarchical knowledge graph for geographic information science / Jiaxin Du in International journal of geographical information science IJGIS, vol 36 n° 5 (May 2022)
![]()
[article]
Titre : GIS-KG: building a large-scale hierarchical knowledge graph for geographic information science Type de document : Article/Communication Auteurs : Jiaxin Du, Auteur ; Shaohua Wang, Auteur ; Xinyue Ye, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 873 - 897 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage profond
[Termes IGN] approche hiérarchique
[Termes IGN] exploration de données
[Termes IGN] ingénierie des connaissances
[Termes IGN] ontologie
[Termes IGN] recherche d'information géographique
[Termes IGN] réseau sémantique
[Termes IGN] traitement du langage naturelRésumé : (auteur) An organized knowledge base can facilitate the exploration of existing knowledge and the detection of emerging topics in a domain. Knowledge about and around Geographic Information Science and its associated system technologies (GIS) is complex, extensive and emerging rapidly. Taking the challenge, we built a GIS knowledge graph (GIS-KG) by (1) merging existing GIS bodies of knowledge to create a hierarchical ontology and then (2) applying deep-learning methods to map GIS publications to the ontology. We conducted several experiments on information retrieval to evaluate the novelty and effectiveness of the GIS-KG. Results showed the robust support of GIS-KG for knowledge search of existing GIS topics and potential to explore emerging research themes. Numéro de notice : A2022-341 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.2005795 Date de publication en ligne : 26/11/2021 En ligne : https://doi.org/10.1080/13658816.2021.2005795 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100515
in International journal of geographical information science IJGIS > vol 36 n° 5 (May 2022) . - pp 873 - 897[article]HiPerMovelets: high-performance movelet extraction for trajectory classification / Tarlis Tortelli Portela in International journal of geographical information science IJGIS, vol 36 n° 5 (May 2022)
![]()
[article]
Titre : HiPerMovelets: high-performance movelet extraction for trajectory classification Type de document : Article/Communication Auteurs : Tarlis Tortelli Portela, Auteur ; Jonata Tyska Carvalho, Auteur ; Vania Bogorny, Auteur Année de publication : 2022 Article en page(s) : pp 1012 - 1036 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] classification
[Termes IGN] exploration de données géographiques
[Termes IGN] jeu de données localisées
[Termes IGN] trace numérique
[Termes IGN] trajet (mobilité)Résumé : (auteur) In the last decade, trajectory classification has received significant attention. The vast amount of data generated on social media, the use of sensor networks, IOT devices and other Internet-enabled sources allowed the semantic enrichment of mobility data, making the classification task more challenging. Existing trajectory classification methods have mainly considered space, time and numerical data, ignoring the semantic dimensions. Only recently proposed methods as Movelets and MASTERMovelets can handle all types of dimensions. MASTERMovelets is the only method that automatically discovers the best dimension combination and subtrajectory size for trajectory classification. However, although it outperformed the state-of-the-art in terms of accuracy, MASTERMovelets is computationally expensive and results in a high dimensionality problem, which makes it unfeasible for most real trajectory datasets that contain a big volume of data. To overcome this problem and enable the application of the movelets approach on large datasets, in this paper we propose a new high-performance method for extracting movelets and classifying trajectories, called HiPerMovelets (High-performance Movelets). Experimental results show that HiPerMovelets is 10 times faster than MASTERMovelets, reduces the high-dimensionality problem, is more scalable, and presents a high classification accuracy in all evaluated datasets with both raw and semantic trajectories. Numéro de notice : A2022-332 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/13658816.2021.2018593 Date de publication en ligne : 03/01/2022 En ligne : https://doi.org/10.1080/13658816.2021.2018593 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100608
in International journal of geographical information science IJGIS > vol 36 n° 5 (May 2022) . - pp 1012 - 1036[article]How do voice-assisted digital maps influence human wayfinding in pedestrian navigation? / Yawei Xu in Cartography and Geographic Information Science, vol 49 n° 3 (May 2022)
![]()
[article]
Titre : How do voice-assisted digital maps influence human wayfinding in pedestrian navigation? Type de document : Article/Communication Auteurs : Yawei Xu, Auteur ; Tong Qin, Auteur ; Yulin Wu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 271 - 287 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie numérique
[Termes IGN] acquisition de connaissances
[Termes IGN] cognition
[Termes IGN] comportement
[Termes IGN] itinéraire piétionnier
[Termes IGN] navigation pédestre
[Termes IGN] oculométrie
[Termes IGN] orientation
[Termes IGN] Pékin (Chine)
[Termes IGN] questionnaireRésumé : (auteur) Voice-assisted digital maps have become mainstream navigation aids for pedestrian navigation. Although these maps are widely studied and applied, it is still unclear how they affect human behavior and spatial knowledge acquisition. In this study, we recruited thirty-three college students to carry out an outdoor wayfinding experiment. We compared the effects of voice-assisted digital maps with those of digital maps without voice instructions and paper maps by using eye tracking, sketch maps, questionnaires and interviews. The results show that, compared to the other map types, voice-assisted digital maps can help users reach their destinations more quickly and pay more attention to moving objects, thereby increasing the comfort levels of participants. However, the efficiency of voice-assisted maps on route memory tasks does not rival that of paper maps. Overall, the use of voice-assisted digital maps saves time but may reduce pedestrians’ spatial knowledge acquisition. The results of this study reveal the influence of voice on pedestrian wayfinding and deepen the scientific understanding of the multimedia navigation mode in shaping human spatial ability. Numéro de notice : A2022-295 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2021.2017798 Date de publication en ligne : 13/01/2022 En ligne : https://doi.org/10.1080/15230406.2021.2017798 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100347
in Cartography and Geographic Information Science > vol 49 n° 3 (May 2022) . - pp 271 - 287[article]Discovering co-location patterns in multivariate spatial flow data / Jiannan Cai in International journal of geographical information science IJGIS, vol 36 n° 4 (April 2022)
![]()
[article]
Titre : Discovering co-location patterns in multivariate spatial flow data Type de document : Article/Communication Auteurs : Jiannan Cai, Auteur ; Mei-Po Kwan, Auteur Année de publication : 2022 Article en page(s) : pp 720 - 748 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse bivariée
[Termes IGN] analyse de groupement
[Termes IGN] analyse univariée
[Termes IGN] autocorrélation spatiale
[Termes IGN] Chicago (Illinois)
[Termes IGN] co-positionnement
[Termes IGN] données de flux
[Termes IGN] données socio-économiques
[Termes IGN] dynamique spatiale
[Termes IGN] enquête
[Termes IGN] exploration de données géographiques
[Termes IGN] migration pendulaire
[Termes IGN] origine - destination
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) Spatial flow co-location patterns (FCLPs) are important for understanding the spatial dynamics and associations of movements. However, conventional point-based co-location pattern discovery methods ignore spatial movements between locations and thus may generate erroneous findings when applied to spatial flows. Despite recent advances, there is still a lack of methods for analyzing multivariate flows. To bridge the gap, this paper formulates a novel problem of FCLP discovery and presents an effective detection method based on frequent-pattern mining and spatial statistics. We first define a flow co-location index to quantify the co-location frequency of different features in flow neighborhoods, and then employ a bottom-up method to discover all frequent FCLPs. To further establish the statistical significance of the results, we develop a flow pattern reconstruction method to model the benchmark null hypothesis of independence conditioning on univariate flow characteristics (e.g. flow autocorrelation). Synthetic experiments with predefined FCLPs verify the advantages of our method in terms of correctness over available alternatives. A case study using individual home-work commuting flow data in the Chicago Metropolitan Area demonstrates that residence- or workplace-based co-location patterns tend to overestimate the co-location frequency of people with different occupations and could lead to inconsistent results. Numéro de notice : A2022-256 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1980217 Date de publication en ligne : 20/09/2021 En ligne : https://doi.org/10.1080/13658816.2021.1980217 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100229
in International journal of geographical information science IJGIS > vol 36 n° 4 (April 2022) . - pp 720 - 748[article]Exploring scientific literature by textual and image content using DRIFT / Ximena Pocco in Computers and graphics, vol 103 (April 2022)
PermalinkGraph learning based on signal smoothness representation for homogeneous and heterogeneous change detection / David Alejandro Jimenez-Sierra in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)
PermalinkGraph neural network based model for multi-behavior session-based recommendation / Bo Yu in Geoinformatica [en ligne], vol 26 n° 2 (April 2022)
PermalinkA knowledge representation model based on the geographic spatiotemporal process / Kun Zheng in International journal of geographical information science IJGIS, vol 36 n° 4 (April 2022)
PermalinkSpatially oriented convolutional neural network for spatial relation extraction from natural language texts / Qinjun Qiu in Transactions in GIS, vol 26 n° 2 (April 2022)
PermalinkAccessing spatial knowledge networks with maps / Markus Jobst in International journal of cartography, vol 8 n° 1 (March 2022)
PermalinkEarly warning of COVID-19 hotspots using human mobility and web search query data / Takahiro Yabe in Computers, Environment and Urban Systems, vol 92 (March 2022)
PermalinkCIME: Context-aware geolocation of emergency-related posts / Gabriele Scalia in Geoinformatica [en ligne], vol 26 n° 1 (January 2022)
PermalinkDetecting and visualizing observation hot-spots in massive volunteer-contributed geographic data across spatial scales using GPU-accelerated kernel density estimation / Guiming Zhang in ISPRS International journal of geo-information, vol 11 n° 1 (January 2022)
PermalinkEffective triplet mining improves training of multi-scale pooled CNN for image retrieval / Federico Vaccaro in Machine Vision and Applications, vol 33 n° 1 (January 2022)
Permalink