Descripteur
Termes IGN > géomatique > géopositionnement > positionnement en intérieur
positionnement en intérieurSynonyme(s)navigation en intérieur |
Documents disponibles dans cette catégorie (121)



Etendre la recherche sur niveau(x) vers le bas
Navigation network derivation for QR code-based indoor pedestrian path planning / Jinjin Yan in Transactions in GIS, vol 26 n° 3 (May 2022)
![]()
[article]
Titre : Navigation network derivation for QR code-based indoor pedestrian path planning Type de document : Article/Communication Auteurs : Jinjin Yan, Auteur ; Jinwoo Lee, Auteur ; Sisi Zlatanova, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1240 - 1255 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] batiment commercial
[Termes IGN] bâtiment public
[Termes IGN] navigation pédestre
[Termes IGN] noeud
[Termes IGN] point d'intérêt
[Termes IGN] positionnement en intérieur
[Termes IGN] QR code
[Termes IGN] scène intérieure
[Termes IGN] trajet (mobilité)Résumé : (auteur) With the development of cities, the indoor structures of contemporary public or commercial buildings are becoming increasingly complex. Accordingly, the need for indoor navigation has arisen. Among the indoor positioning technologies, quick response (QR) code, a low-cost, easily deployable, flexible, and efficient approach, has been used for indoor positioning and navigation purposes. A navigation network (model) is a precondition for pedestrian navigation path planning. However, no thorough research has been completed to investigate the relationship between navigation networks and locations of QR codes, which may cause ambiguities when deciding the closest node from the network that should be used for path computation. Specifically, QR codes are generally placed according to preferences or certain specifications whereas current agreed navigation network derivation approaches do not consider that. This article presents a navigation network derivation approach to address the issue by integrating QR code locations as nodes in navigation networks. The present approach is demonstrated in a shopping mall case. The results show that the approach can overcome the above-mentioned issue for indoor pedestrian path planning based on the QR code localization. Numéro de notice : A2022-476 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12912 Date de publication en ligne : 10/04/2022 En ligne : https://doi.org/10.1111/tgis.12912 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100823
in Transactions in GIS > vol 26 n° 3 (May 2022) . - pp 1240 - 1255[article]Automatic extraction of indoor spatial information from floor plan image: A patch-based deep learning methodology application on large-scale complex buildings / Hyunjung Kim in ISPRS International journal of geo-information, vol 10 n° 12 (December 2021)
![]()
[article]
Titre : Automatic extraction of indoor spatial information from floor plan image: A patch-based deep learning methodology application on large-scale complex buildings Type de document : Article/Communication Auteurs : Hyunjung Kim, Auteur ; Seongyong Kim, Auteur ; Kiyun Yu, Auteur Année de publication : 2021 Article en page(s) : n° 828 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage profond
[Termes IGN] bâtiment
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] indoorGML
[Termes IGN] positionnement en intérieur
[Termes IGN] reconstruction 3D du bâtiRésumé : (auteur) Automatic floor plan analysis has gained increased attention in recent research. However, numerous studies related to this area are mainly experiments conducted with a simplified floor plan dataset with low resolution and a small housing scale due to the suitability for a data-driven model. For practical use, it is necessary to focus more on large-scale complex buildings to utilize indoor structures, such as reconstructing multi-use buildings for indoor navigation. This study aimed to build a framework using CNN (Convolution Neural Networks) for analyzing a floor plan with various scales of complex buildings. By dividing a floor plan into a set of normalized patches, the framework enables the proposed CNN model to process varied scale or high-resolution inputs, which is a barrier for existing methods. The model detected building objects per patch and assembled them into one result by multiplying the corresponding translation matrix. Finally, the detected building objects were vectorized, considering their compatibility in 3D modeling. As a result, our framework exhibited similar performance in detection rate (87.77%) and recognition accuracy (85.53%) to that of existing studies, despite the complexity of the data used. Through our study, the practical aspects of automatic floor plan analysis can be expanded. Numéro de notice : A2021-926 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10120828 Date de publication en ligne : 10/12/2021 En ligne : https://doi.org/10.3390/ijgi10120828 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99289
in ISPRS International journal of geo-information > vol 10 n° 12 (December 2021) . - n° 828[article]Variational bayesian compressive multipolarization indoor radar imaging / Van Ha Tang in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 9 (September 2021)
![]()
[article]
Titre : Variational bayesian compressive multipolarization indoor radar imaging Type de document : Article/Communication Auteurs : Van Ha Tang, Auteur ; Abdesselam Bouzerdoum, Auteur ; Son Lam Phung, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 7459 - 7474 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] acquisition comprimée
[Termes IGN] détection à travers-le-mur
[Termes IGN] estimation bayesienne
[Termes IGN] fouillis d'échos
[Termes IGN] image radar
[Termes IGN] inférence statistique
[Termes IGN] modèle stochastique
[Termes IGN] polarisation
[Termes IGN] positionnement en intérieur
[Termes IGN] reconstruction d'imageRésumé : (auteur) This article introduces a probabilistic Bayesian model for addressing the problem of compressive multipolarization through-wall radar imaging (TWRI). The proposed approach formulates the task of wall-clutter mitigation and multipolarization image reconstruction as a Bayesian inference problem for a joint distribution between observed radar measurements and latent wall-clutter matrix and indoor target images. The joint probability distribution incorporates three prior beliefs: low-dimensional structure of the wall reflections, group sparsity structure of the target images, and joint sparsity among the polarization images. These signal attributes are modeled through hierarchical priors, whose parameters and hyperparameters are treated with a full Bayesian formulation. Furthermore, this article presents a variational Bayesian inference algorithm that estimates wall-clutter and multipolarization images as posterior distributions and optimizes the model parameters and hyperparameters simultaneously. Experimental results on simulated and real radar data show that the proposed model is very effective at removing wall clutter and enhancing target localization even when the radar measurements are significantly reduced. Numéro de notice : A2021-647 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3051955 Date de publication en ligne : 26/01/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3051955 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98354
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 9 (September 2021) . - pp 7459 - 7474[article]Spatial knowledge acquisition with virtual semantic landmarks in mixed reality-based indoor navigation / Bing Liu in Cartography and Geographic Information Science, vol 48 n° 4 (July 2021)
![]()
[article]
Titre : Spatial knowledge acquisition with virtual semantic landmarks in mixed reality-based indoor navigation Type de document : Article/Communication Auteurs : Bing Liu, Auteur ; Linfang Ding, Auteur ; Liqiu Meng, Auteur Année de publication : 2021 Article en page(s) : pp 305 - 319 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] conception orientée utilisateur
[Termes IGN] GPS assisté pour la navigation (technologies)
[Termes IGN] hologramme
[Termes IGN] information sémantique
[Termes IGN] navigation virtuelle
[Termes IGN] point de repère
[Termes IGN] positionnement en intérieur
[Termes IGN] questionnaire
[Termes IGN] réalité mixte
[Termes IGN] téléphone intelligent
[Termes IGN] utilisateur civilRésumé : (auteur) Landmarks are essential and widely used in human navigation. However, many indoor environments lack visually salient landmarks, which leads to difficulties in navigating in and learning complex and similar-looking indoor environments. In this study, we designed and implemented virtual semantic landmarks in Mixed Reality (MR)-based indoor environments and conducted a user study to explore whether such landmarks can assist spatial knowledge acquisition during navigation. More specifically, we employed the untethered, head-mounted mixed reality device Microsoft HoloLens and used iconic holograms to show the semantic landmarks. In the user study, we used sketch map, landmark locating tasks and interview to assess the results of the spatial knowledge acquisition and collect advice on improving the MR-based navigation interface. The results show that virtual semantic landmarks can assist the acquisition of corresponding knowledge, as such landmarks were labeled second most often in landmark locating task. In addition, individual cases show that head-mounted mixed reality devices may influence not only vision, but also height or time perception of certain users. Our result can be applied to facilitate the design of MR-based navigation interfaces and assist spatial knowledge acquisition. Numéro de notice : A2021-445 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2021.1908171 Date de publication en ligne : 22/04/2021 En ligne : https://doi.org/10.1080/15230406.2021.1908171 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97852
in Cartography and Geographic Information Science > vol 48 n° 4 (July 2021) . - pp 305 - 319[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2021041 SL Revue Centre de documentation Revues en salle Disponible Indoor mapping and modeling by parsing floor plan images / Yijie Wu in International journal of geographical information science IJGIS, vol 35 n° 6 (June 2021)
![]()
[article]
Titre : Indoor mapping and modeling by parsing floor plan images Type de document : Article/Communication Auteurs : Yijie Wu, Auteur ; Jianga Shang, Auteur ; Pan Chen, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1205 - 1231 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] carte d'intérieur
[Termes IGN] chevauchement
[Termes IGN] CityGML
[Termes IGN] construction
[Termes IGN] format Industry foudation classes IFC
[Termes IGN] intégrité topologique
[Termes IGN] mur
[Termes IGN] optimisation spatiale
[Termes IGN] positionnement en intérieur
[Termes IGN] vectorisationRésumé : (auteur) A large proportion of indoor spatial data is generated by parsing floor plans. However, a mature and automatic solution for generating high-quality building elements (e.g., walls and doors) and space partitions (e.g., rooms) is still lacking. In this study, we present a two-stage approach to indoor mapping and modeling (IMM) from floor plan images. The first stage vectorizes the building elements on the floor plan images and the second stage repairs the topological inconsistencies between the building elements, separates indoor spaces, and generates indoor maps and models. To reduce the shape complexity of indoor boundary elements, i.e., walls and openings, we harness the regularity of the boundary elements and extract them as rectangles in the first stage. Furthermore, to resolve the overlaps and gaps of the vectorized results, we propose an optimization model that adjusts the rectangle vertex coordinates to conform to the topological constraints. Experiments demonstrate that our approach achieves a considerable improvement in room detection without conforming to Manhattan World Assumption. Our approach also outputs instance-separate walls with consistent topology, which enables direct modeling into Industry Foundation Classes (IFC) or City Geography Markup Language (CityGML). Numéro de notice : A2021-385 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1781130 Date de publication en ligne : 08/07/2020 En ligne : https://doi.org/10.1080/13658816.2020.1781130 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97642
in International journal of geographical information science IJGIS > vol 35 n° 6 (June 2021) . - pp 1205 - 1231[article]Research on feature extraction method of indoor visual positioning image based on area division of foreground and background / Ping Zheng in ISPRS International journal of geo-information, vol 10 n° 6 (June 2021)
PermalinkVisual positioning in indoor environments using RGB-D images and improved vector of local aggregated descriptors / Longyu Zhang in ISPRS International journal of geo-information, vol 10 n° 4 (April 2021)
PermalinkAn anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds / Fei Su in ISPRS Journal of photogrammetry and remote sensing, vol 172 (February 2021)
PermalinkPermalinkPermalinkPermalinkIntelligent sensors for positioning, tracking, monitoring, navigation and smart sensing in smart cities / Li Tiancheng (2021)
PermalinkL’Ultra Wideband, un système de positionnement topographique sans satellite / Joël Van Cranenbroeck in XYZ, n° 165 (décembre 2020)
PermalinkIndoor positioning using PnP problem on mobile phone images / Hana Kubickova in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
PermalinkA proposal for modeling indoor–outdoor spaces through indoorGML, open location code and OpenStreetMap / Ruben Cantarero Navarro in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)
Permalink