Descripteur
Termes descripteurs IGN > 1- Outils - instruments et méthodes > Instrument > instrument de mesure > instrument de chronométrie > horloge > horloge atomique
horloge atomique |



Etendre la recherche sur niveau(x) vers le bas
Performance of miniaturized atomic clocks in static laboratory and dynamic flight environments / Ankit Jain in GPS solutions, vol 25 n° 1 (January 2021)
![]()
[article]
Titre : Performance of miniaturized atomic clocks in static laboratory and dynamic flight environments Type de document : Article/Communication Auteurs : Ankit Jain, Auteur ; Thomas Krawinkel, Auteur ; Steffen Schön, Auteur ; Andreas Bauch, Auteur Année de publication : 2021 Article en page(s) : 16 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] décalage d'horloge
[Termes descripteurs IGN] fréquence
[Termes descripteurs IGN] horloge atomique
[Termes descripteurs IGN] horloge du récepteur
[Termes descripteurs IGN] oscillateur
[Termes descripteurs IGN] récepteur GNSS
[Termes descripteurs IGN] stabilité
[Termes descripteurs IGN] variance d'AllanRésumé : (auteur) Miniaturized atomic clocks with high frequency stability as local oscillators in global navigation satellite system (GNSS) receivers promise to improve real-time kinematic applications. For a number of years, such oscillators are being investigated regarding their overall technical applicability, i.e., transportability, and performance in dynamic environments. The short-term frequency stability of these clocks is usually specified by the manufacturer, being valid for stationary applications. Since the performance of most oscillators is likely degraded in dynamic conditions, various oscillators are tested to find the limits of receiver clock modeling in dynamic cases and consequently derive adequate stochastic models to be used in navigation. We present the performance of three different oscillators (Microsemi MAC SA.35m, Spectratime LCR-900 and Stanford Research Systems SC10) for static and dynamic applications. For the static case, all three oscillators are characterized in terms of their frequency stability at Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The resulting Allan deviations agree well with the manufacturer's data. Furthermore, a flight experiment was conducted in order to evaluate the performance of the oscillators under dynamic conditions. Here, each oscillator is replacing the internal oscillator of a geodetic-grade GNSS receiver and the stability of the receiver clock biases is determined. The time and frequency offsets of the oscillators are characterized with regard to the flight dynamics recorded by a navigation-grade inertial measurement unit. The results of the experiment show that the frequency stability of each oscillator is degraded by about at least one order of magnitude compared to the static case. Also, the two quartz oscillators show a significant g-sensitivity resulting in frequency shifts of − 1.2 × 10−9 and + 1.5 × 10−9, respectively, while the rubidium clocks are less sensitive, thus enabling receiver clock modeling and strengthening of the navigation performance even in high dynamics. Numéro de notice : A2021-003 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-01036-4 date de publication en ligne : 13/10/2020 En ligne : https://doi.org/10.1007/s10291-020-01036-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96081
in GPS solutions > vol 25 n° 1 (January 2021) . - 16 p.[article]Evolution of orbit and clock quality for real-time multi-GNSS solutions / Kamil Kazmierski in GPS solutions, Vol 24 n° 4 (October 2020)
![]()
[article]
Titre : Evolution of orbit and clock quality for real-time multi-GNSS solutions Type de document : Article/Communication Auteurs : Kamil Kazmierski, Auteur ; Radoslaw Zajdel, Auteur ; Krzysztof Sosnica, Auteur Année de publication : 2020 Article en page(s) : 12 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] correction
[Termes descripteurs IGN] erreur systématique
[Termes descripteurs IGN] horloge atomique
[Termes descripteurs IGN] orbitographie par GNSS
[Termes descripteurs IGN] positionnement par GNSS
[Termes descripteurs IGN] positionnement ponctuel précis
[Termes descripteurs IGN] précision du positionnement
[Termes descripteurs IGN] synchronisation
[Termes descripteurs IGN] télémétrie laser sur satellite
[Termes descripteurs IGN] temps réelRésumé : (auteur) High-quality satellite orbits and clocks are necessary for multi-GNSS precise point positioning and timing. In undifferenced GNSS solutions, the quality of orbit and clock products significantly influences the resulting position accuracy; therefore, for precise positioning in real time, the corrections for orbits and clocks are generated and distributed to users. In this research, we assess the quality and the availability of real-time CNES orbits and clocks for GPS, GLONASS, Galileo, and BeiDou-2 separated by satellite blocks and types, as well as the product quality changes over time. We calculate the signal-in-space ranging error (SISRE) as the main orbit and clock quality indicator. Moreover, we employ independent orbit validation based on satellite laser ranging. We found that the most accurate orbits are currently available for GPS. However, Galileo utmost stable atomic clocks compensate for systematic errors in Galileo orbits. As a result, the SISRE for Galileo is lower than that for GPS, equaling 1.6 and 2.3 cm for Galileo and GPS, respectively. The GLONASS satellites, despite the high quality of their orbits, are characterized by poor quality of clocks, and together with BeiDou-2 in medium and geosynchronous inclined orbits, are characterized by SISRE of 4–6 cm. BeiDou-2 in geostationary orbits is characterized by large orbital errors and the lowest availability of real-time orbit and clock corrections due to a large number of satellite maneuvers. The quality of GNSS orbit and clock corrections changes over time and depends on satellite type, block, orbit characteristics, onboard atomic clock, and the sun elevation above the orbital plane. Numéro de notice : A2020-520 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-01026-6 date de publication en ligne : 28/08/2020 En ligne : https://doi.org/10.1007/s10291-020-01026-6 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95687
in GPS solutions > Vol 24 n° 4 (October 2020) . - 12 p.[article]GipsyX/RTGx, a new tool set for space geodetic operations and research / Willy I. Bertiger in Advances in space research, vol 66 n° 3 (1 August 2020)
![]()
[article]
Titre : GipsyX/RTGx, a new tool set for space geodetic operations and research Type de document : Article/Communication Auteurs : Willy I. Bertiger, Auteur ; Yoaz E. Bar-Sever, Auteur ; A. Dorsey, Auteur ; Bruce J. Haines, Auteur ; N.R. Harvey, Auteur ; Dan Hemberger, Auteur ; Michael B. Heflin, Auteur ; Wenwen Lu, Auteur ; Mark Miller, Auteur ; Angelyn Moore, Auteur ; Dave Murphy, Auteur ; Paul Ries, Auteur ; L.J. Romans, Auteur ; Aurore E. Sibois, Auteur ; Ant Sibthorpe, Auteur ; Bela Szilagyi, Auteur ; Michele Vallisneri, Auteur ; Pascal Willis , Auteur
Année de publication : 2020 Projets : 3-projet - voir note / Article en page(s) : pp 469 - 489 Note générale : bibliographie
The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] données DORIS
[Termes descripteurs IGN] données GNSS
[Termes descripteurs IGN] données ITGB
[Termes descripteurs IGN] données TLS (télémétrie)
[Termes descripteurs IGN] filtre de Kalman
[Termes descripteurs IGN] horloge atomique
[Termes descripteurs IGN] horloge du satellite
[Termes descripteurs IGN] logiciel d'orbitographie
[Termes descripteurs IGN] positionnement ponctuel précis
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] temps réel
[Termes descripteurs IGN] traitement de données GNSSRésumé : (auteur) GipsyX/RTGx is the Jet Propulsion Laboratory’s (JPL) next generation software package for positioning, navigation, timing, and Earth science using measurements from three geodetic techniques: Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS); with Very Long Baseline Interferometry (VLBI) under development. The software facilitates combined estimation of geodetic and geophysical parameters using a Kalman filter approach on real or simulated data in both post-processing and in real-time. The estimated parameters include station coordinates and velocities, satellite orbits and clocks, Earth orientation, ionospheric and tropospheric delays. The software is also capable of full realization of a dynamic terrestrial reference through analysis and combination of time series of ground station coordinates.
Applying lessons learned from its predecessors, GIPSY-OASIS and Real Time GIPSY (RTG), GipsyX/RTGx was re-designed from the ground up to offer improved precision, accuracy, usability, and operational flexibility. We present some key aspects of its new architecture, and describe some of its major applications, including Real-time orbit determination and ephemeris predictions in the U.S. Air Force Next Generation GPS Operational Control Segment (OCX), as well as in JPL’s Global Differential GPS (GDGPS) System, supporting User Range Error (URE) of
5 cm RMS; precision post-processing GNSS orbit determination, including JPL’s contributions to the International GNSS Service (IGS) with URE in the 2 cm RMS range; Precise point positioning (PPP) with ambiguity resolution, both statically and kinematically, for geodetic applications with 2 mm horizontal, and 6.5 mm vertical repeatability for static positioning; Operational orbit and clock determination for Low Earth Orbiting (LEO) satellites, such as NASA’s Gravity Recovery and Climate Experiment (GRACE) mission with GRACE relative clock alignment at the 20 ps level; calibration of radio occultation data from LEO satellites for weather forecasting and climate studies; Satellite Laser Ranging (SLR) to GNSS and LEO satellites, DORIS-based and multi-technique orbit determination for LEO; production of terrestrial reference frames and Earth rotation parameters in support of JPL’s contribution to the International Terrestrial Reference Frame (ITRF).Numéro de notice : A2020-575 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : INFORMATIQUE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.asr.2020.04.015 date de publication en ligne : 22/04/2020 En ligne : https://doi.org/10.1016/j.asr.2020.04.015 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96369
in Advances in space research > vol 66 n° 3 (1 August 2020) . - pp 469 - 489[article]Real-time clock prediction of multi-GNSS satellites and its application in precise point positioning / Yaquan Peng in Advances in space research, vol 64 n°7 (1 October 2019)
![]()
[article]
Titre : Real-time clock prediction of multi-GNSS satellites and its application in precise point positioning Type de document : Article/Communication Auteurs : Yaquan Peng, Auteur ; Yidong Lou, Auteur ; Xiaopeng Gong, Auteur ; YinTong Wang, Auteur ; Xiaolei Dai, Auteur Année de publication : 2019 Article en page(s) : pp 1445 - 1454 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] horloge atomique
[Termes descripteurs IGN] horloge du satellite
[Termes descripteurs IGN] positionnement par BeiDou
[Termes descripteurs IGN] positionnement par Galileo
[Termes descripteurs IGN] positionnement par GNSS
[Termes descripteurs IGN] positionnement ponctuel précis
[Termes descripteurs IGN] prédiction
[Termes descripteurs IGN] temps réelRésumé : (auteur) With the development of Global Navigation Satellite System (GNSS), multi-GNSS is expected to greatly benefit precise point positioning (PPP), especially during the outage of real time service (RTS). In this paper, we focus on the performance of multi-GNSS satellite clock prediction and its application in real-time PPP. Based on the statistical analysis of multi-system satellite clock products, a model consisting of polynomial and periodic terms is employed for multi-system satellite clock prediction. To evaluate the method proposed, both post-processed and real-time satellite clock products are employed in simulated real-time processing mode. The results show that the accuracy of satellite clock prediction is related to atomic clock type and satellite type. For GPS satellites, the average standard deviations (STDs) of Cs atomic clocks will reach as high as 0.65 ns while the STD of Rb atomic clocks is only about 0.15 ns. As for BDS and Galileo, the average STD of 2-hour satellite clock prediction are 0.30 ns and 0.06 ns, respectively. In addition, it is validated that real-time PPP can still achieve positioning accuracy of one to three decimeters by using products of 2-hour satellite clock prediction. Moreover, compared to the results of GPS-only PPP, multi-system can greatly enhance the accuracy of real-time PPP from 12.5% to 18.5% in different situations. Numéro de notice : A2019-410 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.asr.2019.06.040 date de publication en ligne : 08/07/2019 En ligne : https://doi.org/10.1016/j.asr.2019.06.040 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93525
in Advances in space research > vol 64 n°7 (1 October 2019) . - pp 1445 - 1454[article]
Titre de série : Relativistic geodesy, ch. 2 Titre : Chronometric geodesy: Methods and applications Type de document : Chapitre/Contribution Auteurs : Pacôme Delva, Auteur ; Heiner Denker, Auteur ; Guillaume Lion , Auteur
Editeur : Springer International Publishing Année de publication : 2019 Collection : Fundamental Theories of Physics num. 196 Projets : ITOC / , AdOC / , FIRST-TF / Importance : pp 25 - 85 Note générale : bibliographie
This research was supported by the European Metrology Research Programme (EMRP) within the Joint Research Project “International Timescales with Optical Clocks” (SIB55 ITOC), as well as the Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Centre 1128 “Relativistic Geodesy and Gravimetry with Quantum Sensors (geo-Q)”, project C04. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. We gratefully acknowledge financial support from Labex FIRST-TF and ERC AdOC (Grant No. 617553).Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes descripteurs IGN] champ de pesanteur terrestre
[Termes descripteurs IGN] chronométrie
[Termes descripteurs IGN] décalage d'horloge
[Termes descripteurs IGN] échelle de temps
[Termes descripteurs IGN] horloge atomiqueRésumé : (auteur) The theory of general relativity was born more than one hundred years ago, and since the beginning has striking prediction success. The gravitational redshift effect discovered by Einstein must be taken into account when comparing the frequencies of distant clocks. However, instead of using our knowledge of the Earth’s gravitational field to predict frequency shifts between distant clocks, one can revert the problem and ask if the measurement of frequency shifts between distant clocks can improve our knowledge of the gravitational field. This is known as chronometric geodesy. Since the beginning of the atomic time era in 1955, the accuracy and stability of atomic clocks were constantly ameliorated, with around one order of magnitude gained every ten years. Now that the atomic clock accuracy reaches the low 10−18 in fractional frequency, and can be compared to this level over continental distances with optical fibres, the accuracy of chronometric geodesy reaches the cm level and begins to be competitive with classical geodetic techniques such as geometric levelling and GNSS/geoid levelling. Moreover, the building of global timescales requires now to take into account these effects to the best possible accuracy. In this chapter we explain how atomic clock comparisons and the building of timescales can benefit from the latest developments in physical geodesy for the modelization and realization of the geoid, as well as how classical geodesy could benefit from this new type of observable, which are clock comparisons that are directly linked to gravity potential differences. Numéro de notice : H2019-006 Affiliation des auteurs : Géodésie+Ext (mi2018-2019) Thématique : POSITIONNEMENT Nature : Chapître / contribution nature-HAL : ChOuvrScient DOI : 10.1007/978-3-030-11500-5_2 date de publication en ligne : 10/02/2019 En ligne : https://doi.org/10.1007/978-3-030-11500-5_2 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95546 Estimation of satellite position, clock and phase bias corrections / Patrick Henkel in Journal of geodesy, vol 92 n° 10 (October 2018)
PermalinkGPS satellite clock determination in case of inter-frequency clock biases for triple-frequency precise point positioning / Jiang Guo in Journal of geodesy, vol 92 n° 10 (October 2018)
PermalinkA quelles altitudes se trouvent les horloges atomiques de l'observatoire de Paris ? / Xavier Collilieux in XYZ, n° 156 (septembre - novembre 2018)
PermalinkHigh performance clocks and gravity field determination / Jurgen Müller in Space Science Reviews, vol 214 n° 1 (February 2018)
PermalinkPermalinkDétermination d’un modèle géopotentiel à haute résolution en zone littorale aidé par des mesures d’horloges atomiques / Hugo Lecomte (2018)
PermalinkBenefits of satellite clock modeling in BDS and Galileo orbit determination / Yun Qing in Advances in space research, vol 60 n° 12 (15 December 2017)
PermalinkLe 6e colloque sur les aspects scientifiques et fondamentaux de Galileo s'est tenu à Valence / Jonathan Chenal in XYZ, n° 153 (décembre 2017 - février 2018)
PermalinkDetermination of a high spatial resolution geopotential model using atomic clock comparisons / Guillaume Lion in Journal of geodesy, vol 91 n° 6 (June 2017)
![]()
PermalinkNRC Remote clock secure dissemination of traceable time / Marina Gertsvolf in Inside GNSS, vol 12 n° 3 (May - June 2017)
Permalink