Descripteur



Etendre la recherche sur niveau(x) vers le bas
Classification of hyperspectral and LiDAR data using coupled CNNs / Renlong Hang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
![]()
[article]
Titre : Classification of hyperspectral and LiDAR data using coupled CNNs Type de document : Article/Communication Auteurs : Renlong Hang, Auteur ; Zhu Li, Auteur ; Pedram Ghamisi, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 4939 - 4950 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] données hétérogènes
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] Houston (Texas)
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] Perceptron multicouche
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] Trente
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) In this article, we propose an efficient and effective framework to fuse hyperspectral and light detection and ranging (LiDAR) data using two coupled convolutional neural networks (CNNs). One CNN is designed to learn spectral–spatial features from hyperspectral data, and the other one is used to capture the elevation information from LiDAR data. Both of them consist of three convolutional layers, and the last two convolutional layers are coupled together via a parameter-sharing strategy. In the fusion phase, feature-level and decision-level fusion methods are simultaneously used to integrate these heterogeneous features sufficiently. For the feature-level fusion, three different fusion strategies are evaluated, including the concatenation strategy, the maximization strategy, and the summation strategy. For the decision-level fusion, a weighted summation strategy is adopted, where the weights are determined by the classification accuracy of each output. The proposed model is evaluated on an urban data set acquired over Houston, USA, and a rural one captured over Trento, Italy. On the Houston data, our model can achieve a new record overall accuracy (OA) of 96.03%. On the Trento data, it achieves an OA of 99.12%. These results sufficiently certify the effectiveness of our proposed model. Numéro de notice : A2020-391 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2969024 date de publication en ligne : 06/02/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2969024 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95374
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 7 (July 2020) . - pp 4939 - 4950[article]A spatial analysis of non‐English Twitter activity in Houston, TX / Matthew Haffner in Transactions in GIS, vol 22 n° 4 (August 2018)
![]()
[article]
Titre : A spatial analysis of non‐English Twitter activity in Houston, TX Type de document : Article/Communication Auteurs : Matthew Haffner, Auteur Année de publication : 2018 Article en page(s) : pp 913 - 929 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] données issues des réseaux sociaux
[Termes descripteurs IGN] Houston (Texas)
[Termes descripteurs IGN] langage naturel (informatique)
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] TwitterRésumé : (Auteur) The use of social media data in geographic studies has become common, yet the question of social media's validity in such contexts is often overlooked. Social media data suffers from a variety of biases and limitations; nevertheless, with a proper understanding of the drawbacks, these data can be powerful. As cities seek to become “smarter,” they can potentially use social media data to creatively address the needs of their most vulnerable groups, such as ethnic minorities. However, questions remain unanswered regarding who uses these social networking platforms, how people use these platforms, and how representative social media data is of users' everyday lives. Using several forms of regression, I explore the relationships between a conventional data source (the U.S. Census) and a subset of Twitter data potentially representative of minority groups: tweets created by users with an account language other than English. A considerable amount of non‐stationarity is uncovered, which should serve as a warning against sweeping statements regarding the demographics of users and where people prefer to post. Further, I find that precisely located Twitter data informs us more about the digital status of places and less about users' day‐to‐day travel patterns. Numéro de notice : A2018-574 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12335 date de publication en ligne : 11/04/2018 En ligne : https://doi.org/10.1111/tgis.12335 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92320
in Transactions in GIS > vol 22 n° 4 (August 2018) . - pp 913 - 929[article]Fusion of hyperspectral and LiDAR data using sparse and low-rank component analysis / Behnood Rasti in IEEE Transactions on geoscience and remote sensing, vol 55 n° 11 (November 2017)
![]()
[article]
Titre : Fusion of hyperspectral and LiDAR data using sparse and low-rank component analysis Type de document : Article/Communication Auteurs : Behnood Rasti, Auteur ; Pedram Ghamisi, Auteur ; Javier Plaza, Auteur Année de publication : 2017 Article en page(s) : pp 6354 - 6365 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes descripteurs IGN] analyse en composantes principales
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] Houston (Texas)
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] TrenteRésumé : (Auteur) The availability of diverse data captured over the same region makes it possible to develop multisensor data fusion techniques to further improve the discrimination ability of classifiers. In this paper, a new sparse and low-rank technique is proposed for the fusion of hyperspectral and light detection and ranging (LiDAR)-derived features. The proposed fusion technique consists of two main steps. First, extinction profiles are used to extract spatial and elevation information from hyperspectral and LiDAR data, respectively. Then, the sparse and low-rank technique is utilized to estimate the low-rank fused features from the extracted ones that are eventually used to produce a final classification map. The proposed approach is evaluated over an urban data set captured over Houston, USA, and a rural one captured over Trento, Italy. Experimental results confirm that the proposed fusion technique outperforms the other techniques used in the experiments based on the classification accuracies obtained by random forest and support vector machine classifiers. Moreover, the proposed approach can effectively classify joint LiDAR and hyperspectral data in an ill-posed situation when only a limited number of training samples are available. Numéro de notice : A2017-748 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2726901 En ligne : https://doi.org/10.1109/TGRS.2017.2726901 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88783
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 11 (November 2017) . - pp 6354 - 6365[article]Spatial eigenvector filtering for spatiotemporal crime mapping and spatial crime analysis / Marco Helbich in Cartography and Geographic Information Science, Vol 42 n° 2 (April 2015)
![]()
[article]
Titre : Spatial eigenvector filtering for spatiotemporal crime mapping and spatial crime analysis Type de document : Article/Communication Auteurs : Marco Helbich, Auteur ; Jamal Jokar Arsanjani, Auteur Année de publication : 2015 Article en page(s) : pp 134 - 148 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] carte thématique
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] filtrage statistique
[Termes descripteurs IGN] Houston (Texas)
[Termes descripteurs IGN] infraction
[Termes descripteurs IGN] valeur propreRésumé : (auteur) Spatial and spatiotemporal analyses are exceedingly relevant to determine criminogenic factors. The estimation of Poisson and negative binomial models (NBM) is complicated by spatial autocorrelation. Therefore, first, eigenvector spatial filtering (ESF) is introduced as a method for spatiotemporal mapping to uncover time-invariant crime patterns. Second, it is demonstrated how ESF is effectively used in criminology to invalidate model misspecification, i.e., residual spatial autocorrelation, using a nonviolent crime dataset for the metropolitan area of Houston, Texas, over the period 2005–2010. The results suggest that local and regional geography significantly contributes to the explanation of crime patterns. Furthermore, common space-time eigenvectors selected on an annual basis indicate striking spatiotemporal patterns persisting over time. The findings about the driving forces behind Houston’s crime show that linear and nonlinear, spatially filtered, NBMs successfully absorb latent autocorrelation and, therefore, prevent parameter estimation bias. The consideration of a spatial filter also increases the explanatory power of the regressions. It is concluded that ESF can be highly recommended for the integration in spatial and spatiotemporal modeling toolboxes of law enforcement agencies. Numéro de notice : A2015-238 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2014.893839 En ligne : https://doi.org/10.1080/15230406.2014.893839 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76495
in Cartography and Geographic Information Science > Vol 42 n° 2 (April 2015) . - pp 134 - 148[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2015021 SL Revue Centre de documentation Revues en salle Disponible An entropy-based multispectral image classification algorithm / Di Long in IEEE Transactions on geoscience and remote sensing, vol 51 n° 12 (December 2013)
![]()
[article]
Titre : An entropy-based multispectral image classification algorithm Type de document : Article/Communication Auteurs : Di Long, Auteur ; Vijay P. Singh, Auteur Année de publication : 2013 Article en page(s) : pp 5225 - 5238 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] classificateur
[Termes descripteurs IGN] entropie maximale
[Termes descripteurs IGN] Houston (Texas)
[Termes descripteurs IGN] image Landsat-ETM+Résumé : (Auteur) Employing the entropy theory, this paper presents a new and robust multispectral image classification algorithm. The digital number (DN) in remotely sensed multispectral images is considered as a random variable when judging the allocation of unknown pixels into predefined training classes. If an unknown pixel shows a similar DN vector as the pixels in a training class, it will increase the global entropy defined as the sum of DN probabilities multiplied by the logarithm of DN probabilities for all pixels within the training class. The unknown pixel is to be assigned to the class for which the entropy of the training class is increased most due to the inclusion of the pixel. The proposed entropy-based classification (EC) is compared with the maximum likelihood classification (MLC), parallelepiped classification, minimum distance classification, Mahalanobis distance classification (MDC), iterative self-organizing data analysis technique (ISODATA) classification, and K-means classification. These classifiers were applied to a Landsat Enhanced Thematic Mapper Plus image covering Houston, Texas, USA, acquired on October 16, 1999. A reference land cover map from the National Land Cover Data 2001 of the same area was taken as a ground reference to assess the accuracy of classification results, suggesting that the EC showed comparable overall accuracy as MDC, and they both outperformed other classifiers. The results of MLC can be improved by substituting the multivariate lognormal or gamma distribution for the multivariate normal distribution involved in its assumption. The EC algorithm has the potential to produce reliable land cover maps regardless of the distribution of DN vectors and relevant parameters of probability density functions involved in other classifiers. Numéro de notice : A2013-694 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2013.2272560 En ligne : https://doi.org/10.1109/TGRS.2013.2272560 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32830
in IEEE Transactions on geoscience and remote sensing > vol 51 n° 12 (December 2013) . - pp 5225 - 5238[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 065-2013121 RAB Revue Centre de documentation En réserve 3L Disponible