Descripteur
Documents disponibles dans cette catégorie (7)



Etendre la recherche sur niveau(x) vers le bas
Point cloud data processing optimization in spectral and spatial dimensions based on multispectral Lidar for urban single-wood extraction / Shuo Shi in ISPRS International journal of geo-information, vol 12 n° 3 (March 2023)
![]()
[article]
Titre : Point cloud data processing optimization in spectral and spatial dimensions based on multispectral Lidar for urban single-wood extraction Type de document : Article/Communication Auteurs : Shuo Shi, Auteur ; Xingtao Tang, Auteur ; Bowen Chen, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 90 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse spectrale
[Termes IGN] arbre urbain
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Houston (Texas)
[Termes IGN] interpolation
[Termes IGN] réflectance spectrale
[Termes IGN] segmentation
[Termes IGN] semis de pointsRésumé : (auteur) Lidar can effectively obtain three-dimensional information on ground objects. In recent years, lidar has developed rapidly from single-wavelength to multispectral hyperspectral imaging. The multispectral airborne lidar Optech Titan is the first commercial system that can collect point cloud data on 1550, 1064, and 532 nm channels. This study proposes a method of point cloud segmentation in the preprocessed intensity interpolation process to solve the problem of inaccurate intensity at the boundary during point cloud interpolation. The entire experiment consists of three steps. First, a multispectral lidar point cloud is obtained using point cloud segmentation and intensity interpolation; the spatial dimension advantage of the multispectral point cloud is used to improve the accuracy of spectral information interpolation. Second, point clouds are divided into eight categories by constructing geometric information, spectral reflectance information, and spectral characteristics. Accuracy evaluation and contribution analysis are also conducted through point cloud truth value and classification results. Lastly, the spatial dimension information is enhanced by point cloud drop sampling, the method is used to solve the error caused by airborne scanning and single-tree extraction of urban trees. Classification results showed that point cloud segmentation before intensity interpolation can effectively improve the interpolation and classification accuracies. The total classification accuracy of the data is improved by 3.7%. Compared with the extraction result (377) of single wood without subsampling treatment, the result of the urban tree extraction proved the effectiveness of the proposed method with a subsampling algorithm in improving the accuracy. Accordingly, the problem of over-segmentation is solved, and the final single-wood extraction result (329) is markedly consistent with the real situation of the region. Numéro de notice : A2023-159 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi12030090 Date de publication en ligne : 23/02/2023 En ligne : https://doi.org/10.3390/ijgi12030090 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102852
in ISPRS International journal of geo-information > vol 12 n° 3 (March 2023) . - n° 90[article]Assessing surface drainage conditions at the street and neighborhood scale: A computer vision and flow direction method applied to lidar data / Cheng-Chun Lee in Computers, Environment and Urban Systems, vol 93 (April 2022)
![]()
[article]
Titre : Assessing surface drainage conditions at the street and neighborhood scale: A computer vision and flow direction method applied to lidar data Type de document : Article/Communication Auteurs : Cheng-Chun Lee, Auteur ; Nasir G. Gharaibeh, Auteur Année de publication : 2022 Article en page(s) : n° 101755 Note générale : bibliogrphie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] drainage
[Termes IGN] écoulement des eaux
[Termes IGN] Houston (Texas)
[Termes IGN] inondation
[Termes IGN] lidar mobile
[Termes IGN] modèle numérique de surface
[Termes IGN] ruissellement
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Surface drainage at the neighborhood and street scales plays an important role in conveying stormwater and mitigating urban flooding. Surface drainage at the local scale is often ignored due to the lack of up-to-date fine-scale topographical information. This paper addresses this issue by providing a novel method for evaluating surface drainage at the neighborhood and street scales based on mobile lidar (light detection and ranging) measurements. The developed method derives topographical properties and runoff accumulation by applying a semantic segmentation (SS) model (a computer vision technique) and a flow direction model (a hydrology technique) to lidar data. Fifty lidar images representing 50 street blocks were used to train, validate, and test the SS model. Based on the test dataset, the SS model has 80.3% IoU and 88.5% accuracy. The results suggest that the proposed method can effectively evaluate surface drainage conditions at both the neighborhood and street scales and identify problematic low points that could be susceptible to water ponding. Municipalities and property owners can use this information to take targeted corrective maintenance actions. Numéro de notice : A2022-120 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101755 Date de publication en ligne : 13/01/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101755 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99661
in Computers, Environment and Urban Systems > vol 93 (April 2022) . - n° 101755[article]Classification of hyperspectral and LiDAR data using coupled CNNs / Renlong Hang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
![]()
[article]
Titre : Classification of hyperspectral and LiDAR data using coupled CNNs Type de document : Article/Communication Auteurs : Renlong Hang, Auteur ; Zhu Li, Auteur ; Pedram Ghamisi, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 4939 - 4950 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données hétérogènes
[Termes IGN] données lidar
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] fusion de données
[Termes IGN] Houston (Texas)
[Termes IGN] image hyperspectrale
[Termes IGN] occupation du sol
[Termes IGN] Perceptron multicouche
[Termes IGN] précision de la classification
[Termes IGN] semis de points
[Termes IGN] Trente
[Termes IGN] utilisation du solRésumé : (auteur) In this article, we propose an efficient and effective framework to fuse hyperspectral and light detection and ranging (LiDAR) data using two coupled convolutional neural networks (CNNs). One CNN is designed to learn spectral–spatial features from hyperspectral data, and the other one is used to capture the elevation information from LiDAR data. Both of them consist of three convolutional layers, and the last two convolutional layers are coupled together via a parameter-sharing strategy. In the fusion phase, feature-level and decision-level fusion methods are simultaneously used to integrate these heterogeneous features sufficiently. For the feature-level fusion, three different fusion strategies are evaluated, including the concatenation strategy, the maximization strategy, and the summation strategy. For the decision-level fusion, a weighted summation strategy is adopted, where the weights are determined by the classification accuracy of each output. The proposed model is evaluated on an urban data set acquired over Houston, USA, and a rural one captured over Trento, Italy. On the Houston data, our model can achieve a new record overall accuracy (OA) of 96.03%. On the Trento data, it achieves an OA of 99.12%. These results sufficiently certify the effectiveness of our proposed model. Numéro de notice : A2020-391 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2969024 Date de publication en ligne : 06/02/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2969024 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95374
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 7 (July 2020) . - pp 4939 - 4950[article]A spatial analysis of non‐English Twitter activity in Houston, TX / Matthew Haffner in Transactions in GIS, vol 22 n° 4 (August 2018)
![]()
[article]
Titre : A spatial analysis of non‐English Twitter activity in Houston, TX Type de document : Article/Communication Auteurs : Matthew Haffner, Auteur Année de publication : 2018 Article en page(s) : pp 913 - 929 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Houston (Texas)
[Termes IGN] langage naturel (informatique)
[Termes IGN] régression
[Termes IGN] TwitterRésumé : (Auteur) The use of social media data in geographic studies has become common, yet the question of social media's validity in such contexts is often overlooked. Social media data suffers from a variety of biases and limitations; nevertheless, with a proper understanding of the drawbacks, these data can be powerful. As cities seek to become “smarter,” they can potentially use social media data to creatively address the needs of their most vulnerable groups, such as ethnic minorities. However, questions remain unanswered regarding who uses these social networking platforms, how people use these platforms, and how representative social media data is of users' everyday lives. Using several forms of regression, I explore the relationships between a conventional data source (the U.S. Census) and a subset of Twitter data potentially representative of minority groups: tweets created by users with an account language other than English. A considerable amount of non‐stationarity is uncovered, which should serve as a warning against sweeping statements regarding the demographics of users and where people prefer to post. Further, I find that precisely located Twitter data informs us more about the digital status of places and less about users' day‐to‐day travel patterns. Numéro de notice : A2018-574 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12335 Date de publication en ligne : 11/04/2018 En ligne : https://doi.org/10.1111/tgis.12335 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92320
in Transactions in GIS > vol 22 n° 4 (August 2018) . - pp 913 - 929[article]Fusion of hyperspectral and LiDAR data using sparse and low-rank component analysis / Behnood Rasti in IEEE Transactions on geoscience and remote sensing, vol 55 n° 11 (November 2017)
![]()
[article]
Titre : Fusion of hyperspectral and LiDAR data using sparse and low-rank component analysis Type de document : Article/Communication Auteurs : Behnood Rasti, Auteur ; Pedram Ghamisi, Auteur ; Javier Plaza, Auteur Année de publication : 2017 Article en page(s) : pp 6354 - 6365 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse en composantes principales
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] fusion de données
[Termes IGN] Houston (Texas)
[Termes IGN] image hyperspectrale
[Termes IGN] TrenteRésumé : (Auteur) The availability of diverse data captured over the same region makes it possible to develop multisensor data fusion techniques to further improve the discrimination ability of classifiers. In this paper, a new sparse and low-rank technique is proposed for the fusion of hyperspectral and light detection and ranging (LiDAR)-derived features. The proposed fusion technique consists of two main steps. First, extinction profiles are used to extract spatial and elevation information from hyperspectral and LiDAR data, respectively. Then, the sparse and low-rank technique is utilized to estimate the low-rank fused features from the extracted ones that are eventually used to produce a final classification map. The proposed approach is evaluated over an urban data set captured over Houston, USA, and a rural one captured over Trento, Italy. Experimental results confirm that the proposed fusion technique outperforms the other techniques used in the experiments based on the classification accuracies obtained by random forest and support vector machine classifiers. Moreover, the proposed approach can effectively classify joint LiDAR and hyperspectral data in an ill-posed situation when only a limited number of training samples are available. Numéro de notice : A2017-748 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2726901 En ligne : https://doi.org/10.1109/TGRS.2017.2726901 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88783
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 11 (November 2017) . - pp 6354 - 6365[article]Spatial eigenvector filtering for spatiotemporal crime mapping and spatial crime analysis / Marco Helbich in Cartography and Geographic Information Science, Vol 42 n° 2 (April 2015)
PermalinkAn entropy-based multispectral image classification algorithm / Di Long in IEEE Transactions on geoscience and remote sensing, vol 51 n° 12 (December 2013)
Permalink