Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géographie physique > hydrographie > qualité des eaux
qualité des eaux |
Documents disponibles dans cette catégorie (73)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Automatic detection of suspected sewage discharge from coastal outfalls based on Sentinel-2 imagery / Yuxin Wang in Science of the total environment, vol 853 (December 2022)
[article]
Titre : Automatic detection of suspected sewage discharge from coastal outfalls based on Sentinel-2 imagery Type de document : Article/Communication Auteurs : Yuxin Wang, Auteur ; Xianqiang He, Auteur ; Yan Bai, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 158374 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par nuées dynamiques
[Termes IGN] couleur de l'océan
[Termes IGN] détection automatique
[Termes IGN] eau usée
[Termes IGN] image Sentinel-MSI
[Termes IGN] littoral
[Termes IGN] perturbation écologique
[Termes IGN] qualité des eauxRésumé : (auteur) Terrestrial pollution has a great impact on the coastal ecological environment, and widely distributed coastal outfalls act as the final gate through which pollutants flow into rivers and oceans. Thus, effectively monitoring the water quality of coastal outfalls is the key to protecting the ecological environment. Satellite remote sensing provides an attractive way to monitor sewage discharge. Selecting the coastal areas of Zhejiang Province, China, as an example, this study proposes an innovative method for automatically detecting suspected sewage discharge from coastal outfalls based on high spatial resolution satellite imageries from Sentinel-2. According to the accumulated in situ observations, we established a training dataset of water spectra covering various optical water types from satellite-retrieved remote sensing reflectance (Rrs). Based on the clustering results from unsupervised classification and different spectral indices, a random forest (RF) classification model was established for the optical water type classification and detection of suspected sewage. The final classification covers 14 optical water types, with type 12 and type 14 corresponding to the high eutrophication water type and suspected sewage water type, respectively. The classification result of model training datasets exhibited high accuracy with only one misclassified sample. This model was evaluated by historical sewage discharge events that were verified by on-site observations and demonstrated that it could successfully recognize sewage discharge from coastal outfalls. In addition, this model has been operationally applied to automatically detect suspected sewage discharge in the coastal area of Zhejiang Province, China, and shows broad application value for coastal pollution supervision, management, and source analysis. Numéro de notice : A2022-859 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.scitotenv.2022.158374 Date de publication en ligne : 28/08/2022 En ligne : https://doi.org/10.1016/j.scitotenv.2022.158374 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102135
in Science of the total environment > vol 853 (December 2022) . - n° 158374[article]Simultaneous retrieval of selected optical water quality indicators from Landsat-8, Sentinel-2, and Sentinel-3 / Nima Pahlevan in Remote sensing of environment, vol 270 (March 2022)
[article]
Titre : Simultaneous retrieval of selected optical water quality indicators from Landsat-8, Sentinel-2, and Sentinel-3 Type de document : Article/Communication Auteurs : Nima Pahlevan, Auteur ; Brandon Smith, Auteur ; Krista Alikas, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112860 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] appariement d'images
[Termes IGN] apprentissage automatique
[Termes IGN] chlorophylle
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] correction atmosphérique
[Termes IGN] données multisources
[Termes IGN] eaux côtières
[Termes IGN] image Landsat-OLI
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-OLCI
[Termes IGN] matière organique
[Termes IGN] Oregon (Etats-Unis)
[Termes IGN] qualité des eauxRésumé : (auteur) Constructing multi-source satellite-derived water quality (WQ) products in inland and nearshore coastal waters from the past, present, and future missions is a long-standing challenge. Despite inherent differences in sensors’ spectral capability, spatial sampling, and radiometric performance, research efforts focused on formulating, implementing, and validating universal WQ algorithms continue to evolve. This research extends a recently developed machine-learning (ML) model, i.e., Mixture Density Networks (MDNs) (Pahlevan et al., 2020; Smith et al., 2021), to the inverse problem of simultaneously retrieving WQ indicators, including chlorophyll-a (Chla), Total Suspended Solids (TSS), and the absorption by Colored Dissolved Organic Matter at 440 nm (acdom(440)), across a wide array of aquatic ecosystems. We use a database of in situ measurements to train and optimize MDN models developed for the relevant spectral measurements (400–800 nm) of the Operational Land Imager (OLI), MultiSpectral Instrument (MSI), and Ocean and Land Color Instrument (OLCI) aboard the Landsat-8, Sentinel-2, and Sentinel-3 missions, respectively. Our two performance assessment approaches, namely hold-out and leave-one-out, suggest significant, albeit varying degrees of improvements with respect to second-best algorithms, depending on the sensor and WQ indicator (e.g., 68%, 75%, 117% improvements based on the hold-out method for Chla, TSS, and acdom(440), respectively from MSI-like spectra). Using these two assessment methods, we provide theoretical upper and lower bounds on model performance when evaluating similar and/or out-of-sample datasets. To evaluate multi-mission product consistency across broad spatial scales, map products are demonstrated for three near-concurrent OLI, MSI, and OLCI acquisitions. Overall, estimated TSS and acdom(440) from these three missions are consistent within the uncertainty of the model, but Chla maps from MSI and OLCI achieve greater accuracy than those from OLI. By applying two different atmospheric correction processors to OLI and MSI images, we also conduct matchup analyses to quantify the sensitivity of the MDN model and best-practice algorithms to uncertainties in reflectance products. Our model is less or equally sensitive to these uncertainties compared to other algorithms. Recognizing their uncertainties, MDN models can be applied as a global algorithm to enable harmonized retrievals of Chla, TSS, and acdom(440) in various aquatic ecosystems from multi-source satellite imagery. Local and/or regional ML models tuned with an apt data distribution (e.g., a subset of our dataset) should nevertheless be expected to outperform our global model. Numéro de notice : A2022-126 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112860 Date de publication en ligne : 04/01/2022 En ligne : https://doi.org/10.1016/j.rse.2021.112860 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99705
in Remote sensing of environment > vol 270 (March 2022) . - n° 112860[article]Possibilities for assessment and geovisualization of spatial and temporal water quality data using a webGIS application / Daniel Balla in ISPRS International journal of geo-information, vol 11 n° 2 (February 2022)
[article]
Titre : Possibilities for assessment and geovisualization of spatial and temporal water quality data using a webGIS application Type de document : Article/Communication Auteurs : Daniel Balla, Auteur ; Marianna Zichar, Auteur ; Emoke Kiss, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 108 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] contamination
[Termes IGN] données spatiotemporelles
[Termes IGN] épidémie
[Termes IGN] évaluation
[Termes IGN] maladie infectieuse
[Termes IGN] outil d'aide à la décision
[Termes IGN] pollution des eaux
[Termes IGN] qualité des eaux
[Termes IGN] WebSIG
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) The provision of webGIS-based water quality data services has become a priority area for both the public and administrative sectors in the context of the pandemic emergency associated with the global spread of COVID-19. Current geographic, monitoring and decision supporting systems, typically based on web-based geospatial information, greatly facilitate the sharing of spatial and temporal data from environmental databases and real-time analyses. In the present study, different water quality indices are determined, compared and geovisualized, during which the changes in the quality of the shallow groundwater resources of a settlement are examined in the period (2011–2019) in an eastern Hungarian settlement. Another objective of the research is to determine three water quality indices (Water Quality Index, CCME Water Quality Index, Contamination degree) and categorize water samples based on the same input spatial and temporal data using self-developed freely available geovisualization tools. Groundwater quality was assessed by using different water quality indices. Significant pollution of the groundwater in the time period before the installation of a sewage network was shown. Regarding water quality, significant positive changes were shown based on all three water quality indices in the years after installing a sewage network (2015–2019). The presence of pollution apart from the positive changes suggests that the purification processes will last for a long time. Numéro de notice : A2022-170 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11020108 En ligne : https://doi.org/10.3390/ijgi11020108 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99799
in ISPRS International journal of geo-information > vol 11 n° 2 (February 2022) . - n° 108[article]Spatial variability of suspended sediments in San Francisco Bay, California / Niky C. Taylor in Remote sensing, vol 13 n° 22 (November-2 2021)
[article]
Titre : Spatial variability of suspended sediments in San Francisco Bay, California Type de document : Article/Communication Auteurs : Niky C. Taylor, Auteur ; Raphael M. Kudela, Auteur Année de publication : 2021 Article en page(s) : n° 4625 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] baie
[Termes IGN] échantillonnage
[Termes IGN] estuaire
[Termes IGN] image Sentinel-MSI
[Termes IGN] pas d'échantillonnage au sol
[Termes IGN] qualité des eaux
[Termes IGN] réflectance
[Termes IGN] San Francisco
[Termes IGN] sédiment
[Termes IGN] spectroradiométrie
[Termes IGN] surface de l'eau
[Termes IGN] surveillance du littoral
[Termes IGN] turbidité des eaux
[Termes IGN] variabilitéRésumé : (auteur) Understanding spatial variability of water quality in estuary systems is important for making monitoring decisions and designing sampling strategies. In San Francisco Bay, the largest estuary system on the west coast of North America, tracking the concentration of suspended materials in water is largely limited to point measurements with the assumption that each point is representative of its surrounding area. Strategies using remote sensing can expand monitoring efforts and provide a more complete view of spatial patterns and variability. In this study, we (1) quantify spatial variability in suspended particulate matter (SPM) concentrations at different spatial scales to contextualize current in-water point sampling and (2) demonstrate the potential of satellite and shipboard remote sensing to supplement current monitoring methods in San Francisco Bay. We collected radiometric data from the bow of a research vessel on three dates in 2019 corresponding to satellite overpasses by Sentinel-2, and used established algorithms to retrieve SPM concentrations. These more spatially comprehensive data identified features that are not picked up by current point sampling. This prompted us to examine how much variability exists at spatial scales between 20 m and 10 km in San Francisco Bay using 10 m resolution Sentinel-2 imagery. We found 23–80% variability in SPM at the 5 km scale (the scale at which point sampling occurs), demonstrating the risk in assuming limited point sampling is representative of a 5 km area. In addition, current monitoring takes place along a transect within the Bay’s main shipping channel, which we show underestimates the spatial variance of the full bay. Our results suggest that spatial structure and spatial variability in the Bay change seasonally based on freshwater inflow to the Bay, tidal state, and wind speed. We recommend monitoring programs take this into account when designing sampling strategies, and that end-users account for the inherent spatial uncertainty associated with the resolution at which data are collected. This analysis also highlights the applicability of remotely sensed data to augment traditional sampling strategies. In sum, this study presents ways to supplement water quality monitoring using remote sensing, and uses satellite imagery to make recommendations for future sampling strategies. Numéro de notice : A2021-839 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13224625 Date de publication en ligne : 17/11/2021 En ligne : https://doi.org/10.3390/rs13224625 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99022
in Remote sensing > vol 13 n° 22 (November-2 2021) . - n° 4625[article]Assessing land use–land cover change and soil erosion potential using a combined approach through remote sensing, RUSLE and random forest algorithm / Siddhartho Shekhar Paul in Geocarto international, vol 36 n° 4 ([01/03/2021])
[article]
Titre : Assessing land use–land cover change and soil erosion potential using a combined approach through remote sensing, RUSLE and random forest algorithm Type de document : Article/Communication Auteurs : Siddhartho Shekhar Paul, Auteur ; Jianbing Li, Auteur ; Yubao Li, Auteur ; Lei Shen, Auteur Année de publication : 2021 Article en page(s) : pp 361 - 375 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bassin hydrographique
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification orientée objet
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] coupe rase (sylviculture)
[Termes IGN] détection de changement
[Termes IGN] érosion
[Termes IGN] modèle RUSLE
[Termes IGN] occupation du sol
[Termes IGN] qualité des eaux
[Termes IGN] utilisation du solRésumé : (auteur) Numéro de notice : A2021-161 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1614099 Date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1614099 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97081
in Geocarto international > vol 36 n° 4 [01/03/2021] . - pp 361 - 375[article]PermalinkUn système décisionnel pour l’analyse de la qualité des eaux de rivières / Sandro Bimonte in Ingénierie des systèmes d'information, ISI : Revue des sciences et technologies de l'information, RSTI, vol 20 n° 3 (mai - juin 2015)PermalinkSensitivity analysis of a bio-optical model for Italian lakes focused on Landsat-8, Sentinel-2 and Sentinel-3 / Ciro Manzo in European journal of remote sensing, vol 48 n° 1 (2015)PermalinkUne ressource à faire fructifier durablement / Henri Plauche-Gillon in Géomètre, n° 2119 (novembre 2014)PermalinkApport de l'imagerie satellitaire à haute et très haute résolution pour la recherche d'indices de drainage superficiel : Application aux aires d'alimentation de captage (AAC) d'eau potable / Sébastien Rucquoi in Revue Française de Photogrammétrie et de Télédétection, n° 208 (Octobre 2014)PermalinkTraçabilité d'une pollution dans le réseau d'assainissement de la ville de Lausanne / Frédéric Ducry in Géomatique suisse, vol 112 n° 10 (octobre 2014)PermalinkTélédétection multi-échelle des lacs depuis un aéronef ultraléger motorisé / Y. Akhtman in Géomatique suisse, vol 112 n° 9 (septembre 2014)PermalinkCoastal and marine ecological changes and fish cage culture development in Phu Quoc, Vietnam (2001 to 2011) / Diep Thi Hong Nguyen in Geocarto international, vol 29 n° 5 - 6 (August - October 2014)PermalinkCartographie et valorisation des données de qualité des cours d’eau du bassin Seine-Normandie / Manon Cognyl (2014)PermalinkA spatial-based KDD process to better manage the river water quality / Hugo Alatrista-Salas in Revue internationale de géomatique, vol 23 n° 3 - 4 (septembre 2013 - février 2014)Permalink