Descripteur
Termes IGN > imagerie > image spatiale > image satellite > image à haute résolution
image à haute résolutionVoir aussi |
Documents disponibles dans cette catégorie (355)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Global-aware siamese network for change detection on remote sensing images / Ruiqian Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 199 (May 2023)
[article]
Titre : Global-aware siamese network for change detection on remote sensing images Type de document : Article/Communication Auteurs : Ruiqian Zhang, Auteur ; Hanchao Zhang, Auteur ; Xiaogang Ning, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 61 - 72 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de sensibilité
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] détection de changement
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à haute résolution
[Termes IGN] optimisation (mathématiques)
[Termes IGN] réseau neuronal siamoisRésumé : (auteur) Change detection (CD) in remote sensing images is one of the most important technical options to identify changes in observations in an efficient manner. CD has a wide range of applications, such as land use investigation, urban planning, environmental monitoring and disaster mapping. However, the frequently occurring class imbalance problem brings huge challenges to the change detection applications. To address this issue, we develop a novel global-aware siamese network (GAS-Net), aiming to generate global-aware features for efficient change detection by incorporating the relationships between scenes and foregrounds. The proposed GAS-Net, consisting of the global-attention module (GAM) and foreground-awareness module (FAM) that both learns contextual relationships and enhances symbiotic relation learning between scene and foreground. The experimental results demonstrate the effectiveness and robustness of the proposed GAS-Net, achieving up to 91.21% and 95.84% F1 score on two widely used public datasets, i.e., Levir-CD and Lebedev-CD dataset. The source code is available at https://github.com/xiaoxiangAQ/GAS-Net. Numéro de notice : 2023-204 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2023.04.001 Date de publication en ligne : 05/04/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2023.04.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103106
in ISPRS Journal of photogrammetry and remote sensing > vol 199 (May 2023) . - pp 61 - 72[article]Towards global scale segmentation with OpenStreetMap and remote sensing / Munazza Usmani in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 8 (April 2023)
[article]
Titre : Towards global scale segmentation with OpenStreetMap and remote sensing Type de document : Article/Communication Auteurs : Munazza Usmani, Auteur ; Maurizio Napolitano, Auteur ; Francesca Bovolo, Auteur Année de publication : 2023 Article en page(s) : n° 100031 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bâtiment
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données localisées des bénévoles
[Termes IGN] image à haute résolution
[Termes IGN] information sémantique
[Termes IGN] occupation du sol
[Termes IGN] OpenStreetMap
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] utilisation du solRésumé : (auteur) Land Use Land Cover (LULC) segmentation is a famous application of remote sensing in an urban environment. Up-to-date and complete data are of major importance in this field. Although with some success, pixel-based segmentation remains challenging because of class variability. Due to the increasing popularity of crowd-sourcing projects, like OpenStreetMap, the need for user-generated content has also increased, providing a new prospect for LULC segmentation. We propose a deep-learning approach to segment objects in high-resolution imagery by using semantic crowdsource information. Due to satellite imagery and crowdsource database complexity, deep learning frameworks perform a significant role. This integration reduces computation and labor costs. Our methods are based on a fully convolutional neural network (CNN) that has been adapted for multi-source data processing. We discuss the use of data augmentation techniques and improvements to the training pipeline. We applied semantic (U-Net) and instance segmentation (Mask R-CNN) methods and, Mask R–CNN showed a significantly higher segmentation accuracy from both qualitative and quantitative viewpoints. The conducted methods reach 91% and 96% overall accuracy in building segmentation and 90% in road segmentation, demonstrating OSM and remote sensing complementarity and potential for city sensing applications. Numéro de notice : A2023-148 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ophoto.2023.100031 Date de publication en ligne : 16/02/2023 En ligne : https://doi.org/10.1016/j.ophoto.2023.100031 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102807
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 8 (April 2023) . - n° 100031[article]A GIS-based method for modeling methane emissions from paddy fields by fusing multiple sources of data / Linhua Ma in Science of the total environment, vol 859 n° 1 (February 2023)
[article]
Titre : A GIS-based method for modeling methane emissions from paddy fields by fusing multiple sources of data Type de document : Article/Communication Auteurs : Linhua Ma, Auteur ; Yuanlai Cui, Auteur ; Bo Liu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 159917 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatio-temporelle
[Termes IGN] Chine
[Termes IGN] Corée
[Termes IGN] données multisources
[Termes IGN] Etats-Unis
[Termes IGN] humidité du sol
[Termes IGN] image à haute résolution
[Termes IGN] image infrarouge
[Termes IGN] Italie
[Termes IGN] méthane
[Termes IGN] modélisation
[Termes IGN] réflectance du sol
[Termes IGN] rizière
[Termes IGN] système d'information géographique
[Termes IGN] variation saisonnièreRésumé : (auteur) Quantification of regional methane (CH4) gas emission in the paddy fields is critical under climate warming. Mechanism models generally require numerous parameters while empirical models are too coarse. Based on the mechanism and structure of the widely used model CH4MOD, a GIS-based Regional CH4 Emission Calculation (GRMC) method was put forward by introducing multiple sources of remote sensing images, including MOD09A1, MOD11A2, MOD15A2H as well as local water management standards. The stress of soil moisture condition (f(water)) on CH4 emissions was quantified by calculating the redox potential (Eh) from days after flooding or falling dry. The f(water)-t curve was calculated under different exogenous organic matter addition. Combining the f(water)-t curve with local water management standards, the seasonal variation of f(water) was obtained. It was proven that f(water) was effective in reflecting the regulation role of soil moisture condition. The GRMC was tested at four Eddy Covariance (EC) sites: Nanchang (NC) in China, Twitchell (TWT) in the USA, Castellaro (CAS) in Italy and Cheorwon (CRK) in Korea and has been proven to well track the seasonal dynamics of CH4 emissions with R2 ranges of 0.738–0.848, RMSE ranges of 31.94–149.22 mg C/m2d and MBE ranges of −66.42- -14.79 mg C/m2d. The parameters obtained in Nanchang (NC) site in China were then applied to the Ganfu Plain Irrigation System (GFPIS), a typical rice planting area of China, to analyse the spatial-temporal variations of CH4 emissions. The total CH4 emissions of late rice in the GFPIS from 2001 to 2013 was in the range of 14.47–20.48 (103 t CH4-C). Ts caused spatial variation of CH4 production capacity, resulting in the spatial variability of CH4 emissions. Overall, the GRMC is effective in obtaining CH4 emissions from rice fields on a regional scale. Numéro de notice : A2023-015 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1016/j.scitotenv.2022.159917 Date de publication en ligne : 04/11/2022 En ligne : https://doi.org/10.1016/j.scitotenv.2022.159917 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102133
in Science of the total environment > vol 859 n° 1 (February 2023) . - n° 159917[article]Generating Sentinel-2 all-band 10-m data by sharpening 20/60-m bands: A hierarchical fusion network / Jingan Wu in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
[article]
Titre : Generating Sentinel-2 all-band 10-m data by sharpening 20/60-m bands: A hierarchical fusion network Type de document : Article/Communication Auteurs : Jingan Wu, Auteur ; Liupeng Lin, Auteur ; Chi Zhang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 16 - 31 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] affinage d'image
[Termes IGN] approche hiérarchique
[Termes IGN] bande spectrale
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] filtre passe-haut
[Termes IGN] fusion d'images
[Termes IGN] image à haute résolution
[Termes IGN] image Sentinel-MSIRésumé : (Auteur) Earth observations from the Sentinel-2 mission have been extensively accepted in a variety of land services. The thirteen spectral bands of Sentinel-2, however, are collected at three spatial resolutions of 10/20/60 m, and such a difference brings difficulties to analyze multispectral imagery at a uniform resolution. To address this problem, we developed a hierarchical fusion network (HFN) to sharpen 20/60-m bands and generate Sentinel-2 all-band 10-m data. The deep learning architecture is used to learn the complex mapping between multi-resolution input and output data. Given the deficiency of previous studies in which the spatial information is inferred only from the fine-resolution bands, the proposed hierarchical fusion framework simultaneously leverages the self-similarity information from coarse-resolution bands and the spatial structure information from fine-resolution bands, to enhance the sharpening performance. Technically, the coarse-resolution bands are super-resolved by exploiting the information from themselves and then sharpened by fusing with the fine-resolution bands. Both 20-m and 60-m bands can be sharpened via the developed approach. Experimental results regarding visual comparison and quantitative assessment demonstrate that HFN outperforms the other benchmarking models, including pan-sharpening-based, model-based, geostatistical-based, and other deep-learning-based approaches, showing remarkable performance in reproducing explicit spatial details and maintaining original spectral features. Moreover, the developed model works more effectively than the other models over the heterogeneous landscape, which is usually considered a challenging application scenario. To sum up, the fusion model can sharpen Sentinel-2 20/60-m bands, and the created all-band 10-m data allows image analysis and geoscience applications to be authentically carried out at the 10-m resolution. Numéro de notice : A2023-063 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.017 Date de publication en ligne : 01/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.017 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102392
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 16 - 31[article]L’altimétrie radar remonte les fleuves / Laurent Polidori in Géomètre, n° 2209 (janvier 2023)
[article]
Titre : L’altimétrie radar remonte les fleuves Type de document : Article/Communication Auteurs : Laurent Polidori, Auteur Année de publication : 2023 Article en page(s) : pp 17 - 17 Langues : Français (fre) Descripteur : [Termes IGN] altimétrie satellitaire par radar
[Termes IGN] bande K
[Termes IGN] hauteurs de mer
[Termes IGN] image à haute résolution
[Termes IGN] image SWOT
[Termes IGN] niveau de l'eau
[Vedettes matières IGN] AltimétrieRésumé : (Auteur) Le niveau des océans est mesuré finement depuis trente ans. Lancé le 15 décembre dernier, le satellite franco-américain Swot offre une résolution sans précédent qui permettra de connaître le niveau des eaux continentales, y compris sur des lacs et rivières de petite taille. Numéro de notice : A2023-062 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtSansCL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102361
in Géomètre > n° 2209 (janvier 2023) . - pp 17 - 17[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 063-2023011 RAB Revue Centre de documentation En réserve L003 Disponible Large-scale individual building extraction from open-source satellite imagery via super-resolution-based instance segmentation approach / Shenglong Chen in ISPRS Journal of photogrammetry and remote sensing, vol 195 (January 2023)PermalinkSimplified automatic prediction of the level of damage to similar buildings affected by river flood in a specific area / David Marín-García in Sustainable Cities and Society, vol 88 (January 2023)PermalinkHarvested area did not increase abruptly-how advancements in satellite-based mapping led to erroneous conclusions / Johannes Breidenbach in Annals of Forest Science, vol 79 n° 1 (2022)PermalinkInstance segmentation of standing dead trees in dense forest from aerial imagery using deep learning / Aboubakar Sani-Mohammed in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 6 (December 2022)PermalinkReconstructing compact building models from point clouds using deep implicit fields / Zhaiyu Chen in ISPRS Journal of photogrammetry and remote sensing, vol 194 (December 2022)PermalinkAn advanced bidirectional reflectance factor (BRF) spectral approach for estimating flavonoid content in leaves of Ginkgo plantations / Kai Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 193 (November 2022)PermalinkA high-resolution panchromatic-multispectral satellite image fusion method assisted with building segmentation / Fang Gao in Computers & geosciences, vol 168 (November 2022)PermalinkA relation-augmented embedded graph attention network for remote sensing object detection / Shu Tian in IEEE Transactions on geoscience and remote sensing, vol 60 n° 10 (October 2022)PermalinkThe iterative convolution–thresholding method (ICTM) for image segmentation / Dong Wang in Pattern recognition, vol 130 (October 2022)PermalinkDiscontinuity interpretation and identification of potential rockfalls for high-steep slopes based on UAV nap-of-the-object photogrammetry / Wei Wang in Computers & geosciences, vol 166 (September 2022)Permalink