Descripteur
Termes descripteurs IGN > imagerie > image spatiale > image satellite > image à haute résolution
image à haute résolutionVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
An improved approach based on terrain-dependent mathematical models for georeferencing pushbroom satellite images / Behrooz Moradi in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 1 (January 2021)
![]()
[article]
Titre : An improved approach based on terrain-dependent mathematical models for georeferencing pushbroom satellite images Type de document : Article/Communication Auteurs : Behrooz Moradi, Auteur ; Mohammad Javad Valadan Zoej, Auteur ; Sayad Yaghoobi, Auteur ; Somayeh Yavari, Auteur Année de publication : 2021 Article en page(s) : pp 53 - 69 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] géoréférencement
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image Geoeye
[Termes descripteurs IGN] image Ikonos
[Termes descripteurs IGN] Iran
[Termes descripteurs IGN] modèle par fonctions rationnelles
[Termes descripteurs IGN] modélisation 3D
[Termes descripteurs IGN] Pushbroom hyperspectral imagerRésumé : (Auteur) Recently, linear features in remotely sensed imagery have gained much attention because of their unique characteristics compared to other control features. For georeferencing high-resolution satellite images, the observations in the mathematical equations (slope and y-intercept) of the corresponding control lines in the two spaces are considered the same based on recent studies. However, the use of such assumptions causes error and reduces the accuracy of registration. The aim of this article is to present a methodology based on a quasi-observation assumption in the mathematical equations in the process of georeferencing. Experimental results for IKONOS and GeoEye images over two different cities of Iran indicate that the quasi-observation assumption can increase the average registration accuracy up to 48.96% and 24.77% using 3D-affine and rational function models, respectively. This improvement in accuracy increases the processing time by 31.48% over traditional approaches; however, the proposed methodology can be regarded as an efficient solution. Numéro de notice : A2021-057 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.1.53 date de publication en ligne : 01/01/2021 En ligne : https://doi.org/10.14358/PERS.87.1.53 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96768
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 1 (January 2021) . - pp 53 - 69[article]A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery / Farzaneh Dadrass Javan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
![]()
[article]
Titre : A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery Type de document : Article/Communication Auteurs : Farzaneh Dadrass Javan, Auteur ; Farhad Samadzadegan, Auteur ; Soroosh Mehravar, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 101 - 117 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] affinage d'image
[Termes descripteurs IGN] analyse de variance
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] image Kompsat
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image Geoeye
[Termes descripteurs IGN] image Ikonos
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image panchromatique
[Termes descripteurs IGN] image Pléiades-HR
[Termes descripteurs IGN] image Quickbird
[Termes descripteurs IGN] image Worldview
[Termes descripteurs IGN] netteté
[Termes descripteurs IGN] pansharpening (fusion d'images)
[Termes descripteurs IGN] pouvoir de résolution spectraleRésumé : (auteur) Pan-sharpening methods are commonly used to synthesize multispectral and panchromatic images. Selecting an appropriate algorithm that maintains the spectral and spatial information content of input images is a challenging task. This review paper investigates a wide range of algorithms, including 41 methods. For this purpose, the methods were categorized as Component Substitution (CS-based), Multi-Resolution Analysis (MRA), Variational Optimization-based (VO), and Hybrid and were tested on a collection of 21 case studies. These include images from WorldView-2, 3 & 4, GeoEye-1, QuickBird, IKONOS, KompSat-2, KompSat-3A, TripleSat, Pleiades-1, Pleiades with the aerial platform, and Deimos-2. Neural network-based methods were excluded due to their substantial computational requirements for operational mapping purposes. The methods were evaluated based on four Spectral and three Spatial quality metrics. An Analysis Of Variance (ANOVA) was used to statistically compare the pan-sharpening categories. Results indicate that MRA-based methods performed better in terms of spectral quality, whereas most Hybrid-based methods had the highest spatial quality and CS-based methods had the lowest results both spectrally and spatially. The revisited version of the Additive Wavelet Luminance Proportional Pan-sharpening method had the highest spectral quality, whereas Generalized IHS with Best Trade-off Parameter with Additive Weights showed the highest spatial quality. CS-based methods generally had the fastest run-time, whereas the majority of methods belonging to MRA and VO categories had relatively long run times. Numéro de notice : A2021-014 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.001 date de publication en ligne : 21/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96418
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 101 - 117[article]Steps-based tree crown delineation by analyzing local minima for counting the trees in very high resolution satellite imagery / Debasish Chakraborty in Geocarto international, vol 36 n° 1 ([01/01/2021])
![]()
[article]
Titre : Steps-based tree crown delineation by analyzing local minima for counting the trees in very high resolution satellite imagery Type de document : Article/Communication Auteurs : Debasish Chakraborty, Auteur ; Pranshu Kumar, Auteur Année de publication : 2021 Article en page(s) : pp 110 - 120 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] arborescence
[Termes descripteurs IGN] comptage
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] houppier
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] image Worldview
[Termes descripteurs IGN] itération
[Termes descripteurs IGN] segmentation d'imageRésumé : (Auteur) In this study primarily, high-resolution (HR) satellite image is segmented into tree and non-tree regions. Thereafter plots the local minima in the segmented image. Point surrounded by the higher intensity values is called as local minima. The local minimum is the starting point for marking the tree crown boundary. The adjacent darker points along the local minima are plotted in a specific direction for marking the tree crown boundary. Subsequently a seven steps iterative procedure is followed for delineating and counting the tree crowns. The validation of the method is done on WorldView-2 data. Numéro de notice : A2021-054 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1611947 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1611947 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96779
in Geocarto international > vol 36 n° 1 [01/01/2021] . - pp 110 - 120[article]Automatic building footprint extraction from UAV images using neural networks / Zoran Kokeza in Geodetski vestnik, vol 64 n° 4 (December 2020 - February 2021)
![]()
[article]
Titre : Automatic building footprint extraction from UAV images using neural networks Type de document : Article/Communication Auteurs : Zoran Kokeza, Auteur ; Miroslav Vujasinović, Auteur ; Miro Govedarica, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 545 - 561 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] Bosnie
[Termes descripteurs IGN] cartographie cadastrale
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] empreinte
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] orthoimage
[Termes descripteurs IGN] zone d'intérêtRésumé : (Auteur) Up-to-date cadastral maps are crucial for urban planning. Creating those maps with the classical geodetic methods is expensive and time-consuming. Emerge of Unmanned Aerial Vehicles (UAV) made a possibility for quick acquisition of data with much more details than it was possible before. The topic of the research refers to the challenges of automatic extraction of building footprints on high-resolution orthophotos. The objectives of this study were as follows: (1) to test the possibility of using different publicly available datasets (Tanzania, AIRS and Inria) for neural network training and then test the generalisation capability of the model on the Area Of Interest (AOI); (2) to evaluate the effect of the normalised digital surface model (nDSM) on the results of neural network training and implementation. Evaluation of the results shown that the models trained on the Tanzania (IoU 36.4%), AIRS (IoU 64.4%) and Inria (IoU 7.4%) datasets doesn't satisfy the requested accuracy to update cadastral maps in study area. Much better results are achieved in the second part of the study, where the training of the neural network was done on tiles (256x256) of the orthophoto of AOI created from data acquired using UAV. A combination of RGB orthophoto with nDSM resulted in a 2% increase of IoU, achieving the final IoU of over 90%. Numéro de notice : A2020-777 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.15292/geodetski-vestnik.2020.04.545-561 date de publication en ligne : 26/10/2020 En ligne : http://www.geodetski-vestnik.com/en/2020-4 Format de la ressource électronique : URL bulletin Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96706
in Geodetski vestnik > vol 64 n° 4 (December 2020 - February 2021) . - pp 545 - 561[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 139-2020041 SL Revue Centre de documentation Revues en salle Disponible Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks / Felix Schiefer in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
![]()
[article]
Titre : Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks Type de document : Article/Communication Auteurs : Felix Schiefer, Auteur ; Teja Kattenborn, Auteur ; Annett Frick, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 205-215 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] arbre (flore)
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] espèce végétale
[Termes descripteurs IGN] Forêt-Noire, massif de la
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] inventaire forestier (techniques et méthodes)
[Termes descripteurs IGN] inventaire forestier local
[Termes descripteurs IGN] segmentation sémantique
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) The use of unmanned aerial vehicles (UAVs) in vegetation remote sensing allows a time-flexible and cost-effective acquisition of very high-resolution imagery. Still, current methods for the mapping of forest tree species do not exploit the respective, rich spatial information. Here, we assessed the potential of convolutional neural networks (CNNs) and very high-resolution RGB imagery from UAVs for the mapping of tree species in temperate forests. We used multicopter UAVs to obtain very high-resolution ( Numéro de notice : A2020-706 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.015 date de publication en ligne : 03/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.015 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96236
in ISPRS Journal of photogrammetry and remote sensing > vol 170 (December 2020) . - pp 205-215[article]A novel intelligent classification method for urban green space based on high-resolution remote sensing images / Zhiyu Xu in Remote sensing, vol 12 n° 22 (December 2020)
PermalinkUnderstanding the synergies of deep learning and data fusion of multispectral and panchromatic high resolution commercial satellite imagery for automated ice-wedge polygon detection / Chandi Witharana in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
PermalinkUnsupervised deep joint segmentation of multitemporal high-resolution images / Sudipan Saha in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkHigh-resolution remote sensing image scene classification via key filter bank based on convolutional neural network / Fengpeng Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkExploring multiscale object-based convolutional neural network (multi-OCNN) for remote sensing image classification at high spatial resolution / Vitor Martins in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)
PermalinkBackground tropospheric delay in geosynchronous synthetic aperture radar / Dexin Li in Remote sensing, vol 12 n° 18 (September 2020)
PermalinkHeliport detection using artificial neural networks / Emre Baseski in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 9 (September 2020)
PermalinkAqueous alteration mapping in Rishabdev ultramafic complex using imaging spectroscopy / Hrishikesh Kumar in International journal of applied Earth observation and geoinformation, vol 88 (June 2020)
PermalinkA hybrid deep learning–based model for automatic car extraction from high-resolution airborne imagery / Mehdi Khoshboresh Masouleh in Applied geomatics, vol 12 n° 2 (June 2020)
PermalinkObject-based automatic multi-index built-up areas extraction method for WorldView-2 satellite imagery / Zhenhui Sun in Geocarto international, Vol 35 n° 8 ([01/06/2020])
Permalink