Descripteur
Termes descripteurs IGN > imagerie > image spatiale > image satellite > image à très haute résolution
image à très haute résolutionVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Steps-based tree crown delineation by analyzing local minima for counting the trees in very high resolution satellite imagery / Debasish Chakraborty in Geocarto international, vol 36 n° 1 ([01/01/2021])
![]()
[article]
Titre : Steps-based tree crown delineation by analyzing local minima for counting the trees in very high resolution satellite imagery Type de document : Article/Communication Auteurs : Debasish Chakraborty, Auteur ; Pranshu Kumar, Auteur Année de publication : 2021 Article en page(s) : pp 110 - 120 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] arborescence
[Termes descripteurs IGN] comptage
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] houppier
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] image Worldview
[Termes descripteurs IGN] itération
[Termes descripteurs IGN] segmentation d'imageRésumé : (Auteur) In this study primarily, high-resolution (HR) satellite image is segmented into tree and non-tree regions. Thereafter plots the local minima in the segmented image. Point surrounded by the higher intensity values is called as local minima. The local minimum is the starting point for marking the tree crown boundary. The adjacent darker points along the local minima are plotted in a specific direction for marking the tree crown boundary. Subsequently a seven steps iterative procedure is followed for delineating and counting the tree crowns. The validation of the method is done on WorldView-2 data. Numéro de notice : A2021-054 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1611947 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1611947 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96779
in Geocarto international > vol 36 n° 1 [01/01/2021] . - pp 110 - 120[article]Urban construction waste with VHR remote sensing using multi-feature analysis and a hierarchical segmentation method / Qiang Chen in Remote sensing, vol 13 n° 1 (January 2021)
![]()
[article]
Titre : Urban construction waste with VHR remote sensing using multi-feature analysis and a hierarchical segmentation method Type de document : Article/Communication Auteurs : Qiang Chen, Auteur ; Qianhao Cheng, Auteur ; Jinfei Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 158 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] analyse multicritère
[Termes descripteurs IGN] analyse spectrale
[Termes descripteurs IGN] construction
[Termes descripteurs IGN] déchet
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] gestion urbaine
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] morphologie
[Termes descripteurs IGN] Pékin (Chine)
[Termes descripteurs IGN] segmentation hiérarchique
[Termes descripteurs IGN] urbanisationRésumé : (auteur) With rapid urbanization, the disposal and management of urban construction waste have become the main concerns of urban management. The distribution of urban construction waste is characterized by its wide range, irregularity, and ease of confusion with the surrounding ground objects, such as bare soil, buildings, and vegetation. Therefore, it is difficult to extract and identify information related to urban construction waste by using the traditional single spectral feature analysis method due to the problem of spectral confusion between construction waste and the surrounding ground objects, especially in the context of very-high-resolution (VHR) remote sensing images. Considering the multi-feature analysis method for VHR remote sensing images, we propose an optimal method that combines morphological indexing and hierarchical segmentation to extract the information on urban construction waste in VHR images. By comparing the differences between construction waste and the surrounding ground objects in terms of the spectrum, geometry, texture, and other features, we selected an optimal feature subset to improve the separability of the construction waste and other objects; then, we established a classification model of knowledge rules to achieve the rapid and accurate extraction of construction waste information. We also chose two experimental areas of Beijing to validate our algorithm. By using construction waste separability quality evaluation indexes, the identification accuracy of construction waste in the two study areas was determined to be 96.6% and 96.2%, the separability indexes of the construction waste and buildings reached 1.000, and the separability indexes of the construction waste and vegetation reached 1.000 and 0.818. The experimental results show that our method can accurately identify the exposed construction waste and construction waste covered with a dust screen, and it can effectively solve the problem of spectral confusion between the construction waste and the bare soil, buildings, and vegetation. Numéro de notice : A2021-073 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010158 date de publication en ligne : 05/01/2021 En ligne : https://doi.org/10.3390/rs13010158 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96809
in Remote sensing > vol 13 n° 1 (January 2021) . - n° 158[article]A framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data / Minkyung Chung in Remote sensing, vol 12 n° 22 (December 2020)
![]()
[article]
Titre : A framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data Type de document : Article/Communication Auteurs : Minkyung Chung, Auteur ; Youkyung Han, Auteur ; Yongil Kim, Auteur Année de publication : 2020 Article en page(s) : n° 3835 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] aide à la décision
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] Corée du sud
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] dommage
[Termes descripteurs IGN] estimation par noyau
[Termes descripteurs IGN] flou
[Termes descripteurs IGN] gestion des risques
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] image Geoeye
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image PlanetScope
[Termes descripteurs IGN] incendie de forêt
[Termes descripteurs IGN] Normalized Difference Vegetation IndexRésumé : (auteur) The application of remote sensing techniques for disaster management often requires rapid damage assessment to support decision-making for post-treatment activities. As the on-demand acquisition of pre-event very high-resolution (VHR) images is typically limited, PlanetScope (PS) offers daily images of global coverage, thereby providing favorable opportunities to obtain high-resolution pre-event images. In this study, we propose an unsupervised change detection framework that uses post-fire VHR images with pre-fire PS data to facilitate the assessment of wildfire damage. To minimize the time and cost of human intervention, the entire process was executed in an unsupervised manner from image selection to change detection. First, to select clear pre-fire PS images, a blur kernel was adopted for the blind and automatic evaluation of local image quality. Subsequently, pseudo-training data were automatically generated from contextual features regardless of the statistical distribution of the data, whereas spectral and textural features were employed in the change detection procedure to fully exploit the properties of different features. The proposed method was validated in a case study of the 2019 Gangwon wildfire in South Korea, using post-fire GeoEye-1 (GE-1) and pre-fire PS images. The experimental results verified the effectiveness of the proposed change detection method, achieving an overall accuracy of over 99% with low false alarm rate (FAR), which is comparable to the accuracy level of the supervised approach. The proposed unsupervised framework accomplished efficient wildfire damage assessment without any prior information by utilizing the multiple features from multi-sensor bi-temporal images. Numéro de notice : A2020-793 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs12223835 date de publication en ligne : 22/11/2020 En ligne : https://doi.org/10.3390/rs12223835 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96570
in Remote sensing > vol 12 n° 22 (December 2020) . - n° 3835[article]Parsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss / Xianwei Zheng in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
![]()
[article]
Titre : Parsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss Type de document : Article/Communication Auteurs : Xianwei Zheng, Auteur ; Linxi Huan, Auteur ; Gui-Song Xia, Auteur ; Jianya Gong, Auteur Année de publication : 2020 Article en page(s) : pp 15-28 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] classification basée sur les régions
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] contour
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] méthode fondée sur le noyau
[Termes descripteurs IGN] scène urbaine
[Termes descripteurs IGN] segmentation sémantiqueRésumé : (Auteur) Parsing very high resolution (VHR) urban scene images into regions with semantic meaning, e.g. buildings and cars, is a fundamental task in urban scene understanding. However, due to the huge quantity of details contained in an image and the large variations of objects in scale and appearance, the existing semantic segmentation methods often break one object into pieces, or confuse adjacent objects and thus fail to depict these objects consistently. To address these issues uniformly, we propose a standalone end-to-end edge-aware neural network (EaNet) for urban scene semantic segmentation. For semantic consistency preservation inside objects, the EaNet model incorporates a large kernel pyramid pooling (LKPP) module to capture rich multi-scale context with strong continuous feature relations. To effectively separate confusing objects with sharp contours, a Dice-based edge-aware loss function (EA loss) is devised to guide the EaNet to refine both the pixel- and image-level edge information directly from semantic segmentation prediction. In the proposed EaNet model, the LKPP and the EA loss couple to enable comprehensive feature learning across an entire semantic object. Extensive experiments on three challenging datasets demonstrate that our method can be readily generalized to multi-scale ground/aerial urban scene images, achieving 81.7% in mIoU on Cityscapes Test set and 90.8% in the mean F1-score on the ISPRS Vaihingen 2D Test set. Code is available at: https://github.com/geovsion/EaNet. Numéro de notice : A2020-703 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.09.019 date de publication en ligne : 14/10/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.09.019 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96228
in ISPRS Journal of photogrammetry and remote sensing > vol 170 (December 2020) . - pp 15-28[article]Quality assessment of photogrammetric methods - A workflow for reproducible UAS orthomosaics / Marvin Ludwig in Remote sensing, vol 12 n° 22 (December 2020)
![]()
[article]
Titre : Quality assessment of photogrammetric methods - A workflow for reproducible UAS orthomosaics Type de document : Article/Communication Auteurs : Marvin Ludwig, Auteur ; Christian M. Runge, Auteur ; Nicolas Friess, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 3831 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] capteur optique
[Termes descripteurs IGN] chaîne de traitement
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] orthoimage
[Termes descripteurs IGN] orthoimage géoréférencée
[Termes descripteurs IGN] orthophotoplan numérique
[Termes descripteurs IGN] photogrammétrie aérienne
[Termes descripteurs IGN] point de vérification
[Termes descripteurs IGN] reproductibilité
[Termes descripteurs IGN] série temporelleRésumé : (auteur) Unmanned aerial systems (UAS) are cost-effective, flexible and offer a wide range of applications. If equipped with optical sensors, orthophotos with very high spatial resolution can be retrieved using photogrammetric processing. The use of these images in multi-temporal analysis and the combination with spatial data imposes high demands on their spatial accuracy. This georeferencing accuracy of UAS orthomosaics is generally expressed as the checkpoint error. However, the checkpoint error alone gives no information about the reproducibility of the photogrammetrical compilation of orthomosaics. This study optimizes the geolocation of UAS orthomosaics time series and evaluates their reproducibility. A correlation analysis of repeatedly computed orthomosaics with identical parameters revealed a reproducibility of 99% in a grassland and 75% in a forest area. Between time steps, the corresponding positional errors of digitized objects lie between 0.07 m in the grassland and 0.3 m in the forest canopy. The novel methods were integrated into a processing workflow to enhance the traceability and increase the quality of UAS remote sensing. Numéro de notice : A2020-794 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs12223831 date de publication en ligne : 22/11/2020 En ligne : https://doi.org/10.3390/rs12223831 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96573
in Remote sensing > vol 12 n° 22 (December 2020) . - n° 3831[article]Unsupervised deep joint segmentation of multitemporal high-resolution images / Sudipan Saha in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkMapping croplands of Europe, Middle East, Russia, and Central Asia using Landsat, Random Forest, and Google Earth Engine / Aparna R. Phalke in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
PermalinkA worldwide 3D GCP database inherited from 20 years of massive multi-satellite observations / Laure Chandelier in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
PermalinkAbove-ground biomass estimation of arable crops using UAV-based SfM photogrammetry / Maria Luz Gil-Docampo in Geocarto international, vol 35 n° 7 ([15/05/2020])
PermalinkAssessment of salt marsh change on Assateague Island National Seashore between 1962 and 2016 / Anthony Campbell in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)
PermalinkEdge-reinforced convolutional neural network for road detection in very-high-resolution remote sensing imagery / Xiaoyan Lu in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)
PermalinkHeuristic sample learning for complex urban scenes: Application to urban functional-zone mapping with VHR images and POI data / Xiuyuan Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
PermalinkIntegration of remote sensing and GIS to extract plantation rows from a drone-based image point cloud digital surface model / Nadeem Fareed in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)
PermalinkComplex deformation at shallow depth during the 30 October 2016 Mw6.5 Norcia earthquake: interferencebetween tectonic and gravity processes? / Arthur Delorme in Tectonics, vol 39 n° 2 (February 2020)
![]()
PermalinkSome thoughts on measuring earthquake deformation using optical imagery / Min Huang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 2 (February 2020)
Permalink