Descripteur
Termes IGN > imagerie > image spatiale > image satellite > image à très haute résolution
image à très haute résolutionVoir aussi |
Documents disponibles dans cette catégorie (347)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Des mesures au sol aux images satellite : quelles données pour étudier la pollution lumineuse ? / Christophe Plotard in XYZ, n° 174 (mars 2023)
[article]
Titre : Des mesures au sol aux images satellite : quelles données pour étudier la pollution lumineuse ? Type de document : Article/Communication Auteurs : Christophe Plotard, Auteur ; Philippe Deverchère, Auteur ; Sarah Potin, Auteur ; Sébastien Vauclair, Auteur Année de publication : 2023 Article en page(s) : pp 33 - 38 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] analyse comparative
[Termes IGN] carte thématique
[Termes IGN] données de terrain
[Termes IGN] échelle d'intensité
[Termes IGN] flux lumineux
[Termes IGN] image à basse résolution
[Termes IGN] image à très haute résolution
[Termes IGN] image NPP-VIIRS
[Termes IGN] image satellite
[Termes IGN] impact sur l'environnement
[Termes IGN] intensité lumineuse
[Termes IGN] inventaire
[Termes IGN] modèle numérique de surface
[Termes IGN] modélisation 3D
[Termes IGN] photomètre
[Termes IGN] pollution lumineuse
[Termes IGN] prise de vue nocturne
[Termes IGN] radianceRésumé : (Auteur) Le développement de l’éclairage artificiel nocturne est à l’origine d’une pollution lumineuse aux effets néfastes pour la biodiversité, la santé humaine, la consommation énergétique et l’observation astronomique. Pour analyser les différentes formes de cette pollution, le bureau d’études DarkSkyLab s’appuie sur plusieurs types de données tels que des mesures depuis le sol, des images satellitaires et aériennes, ou des inventaires de points d’éclairage. Cet article en présente les principaux aspects, de même que divers outils, méthodes et indicateurs conçus pour permettre leur traitement, leur modélisation et leur représentation cartographique. Numéro de notice : A2023-069 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/IMAGERIE Nature : Article nature-HAL : ArtSansCL DOI : sans Date de publication en ligne : 01/03/2023 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102863
in XYZ > n° 174 (mars 2023) . - pp 33 - 38[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 112-2023011 RAB Revue Centre de documentation En réserve L003 Disponible SALT: A multifeature ensemble learning framework for mapping urban functional zones from VGI data and VHR images / Hao Wu in Computers, Environment and Urban Systems, vol 100 (March 2023)
[article]
Titre : SALT: A multifeature ensemble learning framework for mapping urban functional zones from VGI data and VHR images Type de document : Article/Communication Auteurs : Hao Wu, Auteur ; Wenting Luo, Auteur ; Anqi Lin, Auteur ; Fanghua Hao, Auteur ; Ana-Maria Olteanu-Raimond , Auteur ; Lanfa Liu, Auteur ; Yan Li, Auteur Année de publication : 2023 Projets : 1-Pas de projet / Article en page(s) : n° 101921 Note générale : Bibliographie
This work was supported by the National Natural Science Foundation of China [42201468, 42071358], Postdoctoral Innovation Talents Support Program of China [BX20220128], China Postdoctoral Science Foundation [2022M721283] and Fundamental Research Funds for the Central Universities [CCNU22QN018].Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multicritère
[Termes IGN] apprentissage automatique
[Termes IGN] boosting adapté
[Termes IGN] cartographie urbaine
[Termes IGN] Chine
[Termes IGN] détection du bâti
[Termes IGN] données localisées des bénévoles
[Termes IGN] image à très haute résolution
[Termes IGN] morphologie urbaine
[Termes IGN] OpenStreetMap
[Termes IGN] point d'intérêt
[Termes IGN] représentation spatiale
[Termes IGN] zone urbaineRésumé : (auteur) Urban functional zone mapping is essential for providing deeper insights into urban morphology and improving urban planning. The emergence of Volunteered Geographic Information (VGI), which provides abundant semantic data, offers a great opportunity to enrich land use information extracted from remote sensing (RS) images. Taking advantage of very-high-resolution (VHR) images and VGI data, this work proposed a SATL multifeature ensemble learning framework for mapping urban functional zones that integrated 65 features from the shapes of building objects, attributes of points of interest (POIs) tags, locations of cellphone users and textures of VHR images. The dimensionality of SALT features was reduced by the autoencoder, and the compressed features were applied to train the ensemble learning model composed of multiple classifiers for optimizing the urban functional zone classification. The effectiveness of the proposed framework was tested in an urbanized region of Nanchang City. The results indicated that the SALT features considering population dynamics and building shapes are comprehensive and feasible for urban functional zone mapping. The autoencoder has been proven efficient for dimension reduction of the original SALT features as it significantly improves the classification of urban functional zones. Moreover, the ensemble learning outperforms other machine learning models in terms of the accuracy and robustness when dealing with multi-classification tasks. Numéro de notice : A2023-125 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101921 Date de publication en ligne : 06/12/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101921 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102504
in Computers, Environment and Urban Systems > vol 100 (March 2023) . - n° 101921[article]GeoMultiTaskNet: remote sensing unsupervised domain adaptation using geographical coordinates / Valerio Marsocci (2023)
Titre : GeoMultiTaskNet: remote sensing unsupervised domain adaptation using geographical coordinates Type de document : Article/Communication Auteurs : Valerio Marsocci, Auteur ; Nicolas Gonthier, Auteur ; Anatol Garioud , Auteur ; Simone Scardapane, Auteur ; Clément Mallet , Auteur Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Année de publication : 2023 Conférence : CVPR 2023, IEEE Conference on Computer Vision and Pattern Recognition workshops 18/06/2023 22/06/2023 Vancouver Colombie britannique - Canada OA Proceedings Importance : 11 p. Format : 21 x 30 cm Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] base de données d'occupation du sol
[Termes IGN] image à très haute résolution
[Termes IGN] jeu de données localisées
[Termes IGN] métadonnées géographiques
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Land cover maps are a pivotal element in a wide range of Earth Observation (EO) applications. However, annotating large datasets to develop supervised systems for remote sensing (RS) semantic segmentation is costly and time-consuming. Unsupervised Domain Adaption (UDA) could tackle these issues by adapting a model trained on a source domain, where labels are available, to a target domain, without annotations. UDA, while gaining importance in computer vision, is still under-investigated in RS. Thus, we propose a new lightweight model, GeoMultiTaskNet, based on two contributions: a GeoMultiTask module (GeoMT), which utilizes geographical coordinates to align the source and target domains, and a Dynamic Class Sampling (DCS) strategy, to adapt the semantic segmentation loss to the frequency of classes. This approach is the first to use geographical metadata for UDA in semantic segmentation. It reaches state-of-the-art performances (47,22% mIoU), reducing at the same time the number of parameters (33M), on a subset of the FLAIR dataset, a recently proposed dataset properly shaped for RS UDA, used for the first time ever for research scopes here. Numéro de notice : C2023-004 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE Nature : Communication DOI : 10.48550/arXiv.2304.07750 En ligne : https://doi.org/10.48550/arXiv.2304.07750 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103083 Solid waste mapping based on very high resolution remote sensing imagery and a novel deep learning approach / Bowen Niu in Geocarto international, vol 38 n° 1 ([01/01/2023])
[article]
Titre : Solid waste mapping based on very high resolution remote sensing imagery and a novel deep learning approach Type de document : Article/Communication Auteurs : Bowen Niu, Auteur ; Quanlong Feng, Auteur ; Jianyu Yang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2164361 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie thématique
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contour
[Termes IGN] déchet
[Termes IGN] fusion de données
[Termes IGN] image à très haute résolution
[Termes IGN] Inde
[Termes IGN] Mexique
[Termes IGN] urbanisationRésumé : (auteur) The urbanization worldwide leads to the rapid increase of solid waste, posing a threat to environment and people’s wellbeing. However, it is challenging to detect solid waste sites with high accuracy due to complex landscape, and very few studies considered solid waste mapping across multi-cities and in large areas. To tackle this issue, this study proposes a novel deep learning model for solid waste mapping from very high resolution remote sensing imagery. By integrating a multi-scale dilated convolutional neural network (CNN) and a Swin-Transformer, both local and global features are aggregated. Experiments in China, India and Mexico indicate that the proposed model achieves high performance with an average accuracy of 90.62%. The novelty lies in the fusion of CNN and Transformer for solid waste mapping in multi-cities without the need for pixel-wise labelled data. Future work would consider more sophisticated methods such as semantic segmentation for fine-grained solid waste classification. Numéro de notice : A2023-109 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2022.2164361 Date de publication en ligne : 04/01/2023 En ligne : https://doi.org/10.1080/10106049.2022.2164361 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102407
in Geocarto international > vol 38 n° 1 [01/01/2023] . - n° 2164361[article]Mapping forest in the Swiss Alps treeline ecotone with explainable deep learning / Thiên-Anh Nguyen in Remote sensing of environment, vol 281 (November 2022)
[article]
Titre : Mapping forest in the Swiss Alps treeline ecotone with explainable deep learning Type de document : Article/Communication Auteurs : Thiên-Anh Nguyen, Auteur ; Benjamin Kellenberger, Auteur ; Devis Tuia, Auteur Année de publication : 2022 Article en page(s) : n° 113217 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Alpes
[Termes IGN] apprentissage profond
[Termes IGN] canopée
[Termes IGN] carte forestière
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] écotone
[Termes IGN] hauteur des arbres
[Termes IGN] image à très haute résolution
[Termes IGN] image aérienne
[Termes IGN] image RVB
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] SuisseRésumé : (auteur) Forest maps are essential to understand forest dynamics. Due to the increasing availability of remote sensing data and machine learning models like convolutional neural networks, forest maps can these days be created on large scales with high accuracy. Common methods usually predict a map from remote sensing images without deliberately considering intermediate semantic concepts that are relevant to the final map. This makes the mapping process difficult to interpret, especially when using opaque deep learning models. Moreover, such procedure is entirely agnostic to the definitions of the mapping targets (e.g., forest types depending on variables such as tree height and tree density). Common models can at best learn these rules implicitly from data, which greatly hinders trust in the produced maps. In this work, we aim at building an explainable deep learning model for forest mapping that leverages prior knowledge about forest definitions to provide explanations to its decisions. We propose a model that explicitly quantifies intermediate variables like tree height and tree canopy density involved in the forest definitions, corresponding to those used to create the forest maps for training the model in the first place, and combines them accordingly. We apply our model to mapping forest types using very high resolution aerial imagery and lay particular focus on the treeline ecotone at high altitudes, where forest boundaries are complex and highly dependent on the chosen forest definition. Results show that our rule-informed model is able to quantify intermediate key variables and predict forest maps that reflect forest definitions. Through its interpretable design, it is further able to reveal implicit patterns in the manually-annotated forest labels, which facilitates the analysis of the produced maps and their comparison with other datasets. Numéro de notice : A2022-794 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2022.113217 Date de publication en ligne : 01/09/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113217 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101928
in Remote sensing of environment > vol 281 (November 2022) . - n° 113217[article]Mapping individual abandoned houses across cities by integrating VHR remote sensing and street view imagery / Shengyuan Zou in International journal of applied Earth observation and geoinformation, vol 113 (September 2022)PermalinkFeature-selection high-resolution network with hypersphere embedding for semantic segmentation of VHR remote sensing images / Hanwen Xu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 6 (June 2022)PermalinkEffect of label noise in semantic segmentation of high resolution aerial images and height data / Arabinda Maiti in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)PermalinkUnveiling the complex canopy spatial structure of a Mediterranean old-growth beech (Fagus sylvatica L.) forest from UAV observations / Francesco Solano in Ecological indicators, vol 138 (May 2022)PermalinkSynergistic use of particle swarm optimization, artificial neural network, and extreme gradient boosting algorithms for urban LULC mapping from WorldView-3 images / Alireza Hamedianfar in Geocarto international, vol 37 n° 3 ([01/02/2022])PermalinkPermalinkDiResNet: Direction-aware residual network for road extraction in VHR remote sensing images / Lei Ding in IEEE Transactions on geoscience and remote sensing, vol 59 n° 12 (December 2021)PermalinkAutomatic tuning of segmentation parameters for tree crown delineation with VHR imagery / Camile Sothe in Geocarto international, vol 36 n° 19 ([01/11/2021])PermalinkA repeatable change detection approach to map extreme storm-related damages caused by intense surface runoff based on optical and SAR remote sensing: Evidence from three case studies in the South of France / Arnaud Cerbelaud in ISPRS Journal of photogrammetry and remote sensing, Vol 182 (December 2021)PermalinkA novel method based on deep learning, GIS and geomatics software for building a 3D city model from VHR satellite stereo imagery / Massimiliano Pepe in ISPRS International journal of geo-information, vol 10 n° 10 (October 2021)Permalink