Descripteur
Termes IGN > imagerie > image spatiale > image satellite > image à très haute résolution
image à très haute résolutionVoir aussi |
Documents disponibles dans cette catégorie (340)



Etendre la recherche sur niveau(x) vers le bas
Effect of label noise in semantic segmentation of high resolution aerial images and height data / Arabinda Maiti in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
![]()
[article]
Titre : Effect of label noise in semantic segmentation of high resolution aerial images and height data Type de document : Article/Communication Auteurs : Arabinda Maiti, Auteur ; Sander J. Oude Elberink, Auteur ; M. George Vosselman, Auteur Année de publication : 2022 Article en page(s) : pp 275 - 282 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] bruit (théorie du signal)
[Termes IGN] données altimétriques
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] image à très haute résolution
[Termes IGN] image aérienne
[Termes IGN] orthoimage
[Termes IGN] segmentation sémantiqueRésumé : (auteur) The performance of deep learning models in semantic segmentation is dependent on the availability of a large amount of labeled data. However, the influence of label noise, in the form of incorrect annotations, on the performance is significant and mostly ignored. This is a big concern in remote sensing applications, wherein acquired datasets are spatially limited, labeling is done by domain experts with possible sources of high inter-and intra-observer variability leading to erroneous predictions. In this paper, we first simulate the label noise while conducting experiments on two different datasets with very high-resolution aerial images, height data, and inaccurate labels, responsible for the training of deep learning models. We then focus on the effect of these noises on the model performance. Different classes respond differently to the label noise. The typical size of an object belonging to a class is a crucial factor regarding the class-specific performance of the model trained with erroneous labels. Errors caused by relative shifts of labels are the most influential label errors. The model is generally more tolerant of the random label noise than other label errors. It has been observed that the accuracy gets reduced by at least 3% while 5% of label pixels are erroneous. In this regard, our study provides a new perspective of evaluating and quantifying the propagation of label noise in the model performance that is indeed important for adopting reliable semantic segmentation practices. Numéro de notice : A2022-434 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.5194/isprs-annals-V-2-2022-275-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2022-275-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100741
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2022 (2022 edition) . - pp 275 - 282[article]Unveiling the complex canopy spatial structure of a Mediterranean old-growth beech (Fagus sylvatica L.) forest from UAV observations / Francesco Solano in Ecological indicators, vol 138 (May 2022)
![]()
[article]
Titre : Unveiling the complex canopy spatial structure of a Mediterranean old-growth beech (Fagus sylvatica L.) forest from UAV observations Type de document : Article/Communication Auteurs : Francesco Solano, Auteur ; Giuseppe Modica, Auteur ; Salvatore Praticò, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 108807 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Calabre
[Termes IGN] écosystème forestier
[Termes IGN] Fagus sylvatica
[Termes IGN] forêt ancienne
[Termes IGN] forêt méditerranéenne
[Termes IGN] forêt primaire
[Termes IGN] image à très haute résolution
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] orthophotoplan numérique
[Termes IGN] photogrammétrie aérienne
[Termes IGN] structure spatiale
[Termes IGN] structure-from-motion
[Termes IGN] surveillance forestièreRésumé : (auteur) In front of climate change scenarios and global loss of biodiversity, it is essential to monitor the structure of old-growth forests to study ecosystem status and dynamics to inform future conservation and restoration programmes. We propose an Unmanned Aerial Vehicle (UAV)-based framework to monitor fine-grained forest top canopy structure in a primary old-growth beech (Fagus sylvatica L.) forest in Pollino National Park, Italy, which belongs to the UNESCO World Heritage (UNESCO WH) serial site “Ancient and Primeval beech forests of the Carpathians and other regions of Europe”. Canopy profile, gap properties and their spatial distribution patterns were analysed using the canopy height model (CHM) derived from UAV surveys. Very high-resolution orthomosaic images coupled with direct field measurement data were used to assess gap detection accuracy and CHM validation. Forest canopy properties along with the vertical layering of the canopy were further explored using second-order statistics. The reconstructed canopy profile revealed a bimodal top height frequency distribution. The upper canopy layer (h > 14 m) was the most represented canopy height, with the remaining 50% split between the medium and lowest layer; 551 gaps were identified within 11.5 ha. Gap size varied between 2 m2 and 353 m2, and 19 m2was the mean gap size; the gap size-frequency relationship reflected a power-law probability distribution. About 97 % of the gaps were Numéro de notice : A2022-369 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.ecolind.2022.108807 Date de publication en ligne : 01/04/2022 En ligne : https://doi.org/10.1016/j.ecolind.2022.108807 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100598
in Ecological indicators > vol 138 (May 2022) . - n° 108807[article]Synergistic use of particle swarm optimization, artificial neural network, and extreme gradient boosting algorithms for urban LULC mapping from WorldView-3 images / Alireza Hamedianfar in Geocarto international, vol 37 n° 3 ([01/03/2022])
![]()
[article]
Titre : Synergistic use of particle swarm optimization, artificial neural network, and extreme gradient boosting algorithms for urban LULC mapping from WorldView-3 images Type de document : Article/Communication Auteurs : Alireza Hamedianfar, Auteur ; Mohamed Barakat A. Gibril, Auteur ; Mohammadjavad Hosseinpoor, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 773 - 791 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] carte d'occupation du sol
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image à très haute résolution
[Termes IGN] image Worldview
[Termes IGN] itération
[Termes IGN] optimisation (mathématiques)
[Termes IGN] optimisation par essaim de particules
[Termes IGN] réseau neuronal artificiel
[Termes IGN] segmentation d'image
[Termes IGN] zone urbaineRésumé : (auteur) Geographic object-based image analysis (GEOBIA) has emerged as an effective and evolving paradigm for analyzing very high resolution (VHR) images as it demonstrates preeminence over the traditional pixel-wise methods and enables the utilization of diverse spectral, geometrical, and textural information to for image classification. Among feature selection (FS) methods, metaheuristic FS techniques have recently demonstrated effective performance in the dimensionality reduction of GEOBIA features. In this study, an artificial neural network (ANN) was integrated with particle swarm optimization (PSO) to enhance the learning process and more effectively determine the most significant features and their importance using WorldView-3 (WV-3) satellite data. First, multi-resolution image segmentation parameters were tuned using Taguchi optimization technique and unsupervised segmentation quality measure. Second, the proposed ANN–PSO was compared with PSO under 100 iterations. The ANN–PSO integration achieved lower root mean square error (RMSE) in all the iterations. Third, state-of-the-art extreme gradient boosting (Xgboost) image classifier was used to derive the land use/land cover (LULC) map of the first study area and assess the transferability of the selected features on the second and third regions. The Xgboost classifier obtained 91.68%, 89.54%, and 89.33% overall accuracies for the first, second, and third sites, respectively. ANN contributed to an intelligent approach for identifying which features are more likely to be relevant and discriminate the land cover types. The proposed integrated FS is a promising approach and an efficient tool for determining significant features and enhancing the detection of urban LULC classes from WV-3 data. Numéro de notice : A2022-344 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1737974 Date de publication en ligne : 12/03/2020 En ligne : https://doi.org/10.1080/10106049.2020.1737974 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100525
in Geocarto international > vol 37 n° 3 [01/03/2022] . - pp 773 - 791[article]DiResNet: Direction-aware residual network for road extraction in VHR remote sensing images / Lei Ding in IEEE Transactions on geoscience and remote sensing, vol 59 n° 12 (December 2021)
![]()
[article]
Titre : DiResNet: Direction-aware residual network for road extraction in VHR remote sensing images Type de document : Article/Communication Auteurs : Lei Ding, Auteur ; Lorenzo Bruzzone, Auteur Année de publication : 2021 Article en page(s) : pp 10243 - 10254 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction du réseau routier
[Termes IGN] image à très haute résolution
[Termes IGN] segmentation d'imageRésumé : (auteur) The binary segmentation of roads in very high resolution (VHR) remote sensing images (RSIs) has always been a challenging task due to factors such as occlusions (caused by shadows, trees, buildings, etc.) and the intraclass variances of road surfaces. The wide use of convolutional neural networks (CNNs) has greatly improved the segmentation accuracy and made the task end-to-end trainable. However, there are still margins to improve in terms of the completeness and connectivity of the results. In this article, we consider the specific context of road extraction and present a direction-aware residual network (DiResNet) that includes three main contributions: 1) an asymmetric residual segmentation network with deconvolutional layers and a structural supervision to enhance the learning of road topology (DiResSeg); 2) a pixel-level supervision of local directions to enhance the embedding of linear features; and 3) a refinement network to optimize the segmentation results (DiResRef). Ablation studies on two benchmark data sets (the Massachusetts data set and the DeepGlobe data set) have confirmed the effectiveness of the presented designs. Comparative experiments with other approaches show that the proposed method has advantages in both overall accuracy and F1-score. The code is available at: https://github.com/ggsDing/DiResNet . Numéro de notice : A2021-870 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3034011 Date de publication en ligne : 16/11/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3034011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99128
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 12 (December 2021) . - pp 10243 - 10254[article]Automatic tuning of segmentation parameters for tree crown delineation with VHR imagery / Camile Sothe in Geocarto international, vol 36 n° 19 ([01/11/2021])
![]()
[article]
Titre : Automatic tuning of segmentation parameters for tree crown delineation with VHR imagery Type de document : Article/Communication Auteurs : Camile Sothe, Auteur ; Claudia Maria de Almeida, Auteur ; Marcos Benedito Schimalski, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2241 - 2259 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] Brésil
[Termes IGN] délimitation
[Termes IGN] forêt tropicale
[Termes IGN] houppier
[Termes IGN] identification de plantes
[Termes IGN] image à très haute résolution
[Termes IGN] image Worldview
[Termes IGN] méthode heuristique
[Termes IGN] orthoimage
[Termes IGN] segmentation d'imageRésumé : (auteur) In the case of tree species delineation with very high spatial resolution (VHR) images, is desirable that each segment corresponds to one individual tree crown (ITC). However, in order to have a segmentation algorithm that generates segments matching to ITCs, its parameters ought to be properly tuned. Aiming to avoid time-consuming trial-and-error procedures associated with this task, some initiatives for the automatic search of segmentation parameters have been developed, such as metaheuristic methods. The objective of this work was to test the automatic tuning of segmentation parameters of three segmentation algorithms for the delineation of ITCs belonging to a native endangered species in a subtropical forest area, comparing this method with the traditional trial-and-error approach. Two datasets (WorldView-2 and an orthoimage) and three segmentation algorithms (multiresolution, mean-shift and graph-based) were tested. For the automatic approach, a hybrid metaheuristic method was applied to accomplish the automatic search of parameters for the segmentation algorithms, while for the trial-and-error, a visual assessment was conducted for each set of parameters tested. Four supervised metrics were used to assess the quality of the segmentation results for the optimization approach and for the final set of parameters chosen in the trial-and-error approach. Results showed that none of the algorithms, datasets or approaches differ too much. The evaluation metrics values were lower, indicating that the reference ITCs polygons matched with the segmentation results. Despite the similar results, the automatic tuning of segmentation parameters proved to be a feasible alternative to reduce the subjectivity and the human effort in the choice of segmentation parameters as compared to the trial-and error approach. Numéro de notice : A2021-765 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1690056 Date de publication en ligne : 14/11/2019 En ligne : https://doi.org/10.1080/10106049.2019.1690056 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98810
in Geocarto international > vol 36 n° 19 [01/11/2021] . - pp 2241 - 2259[article]A repeatable change detection approach to map extreme storm-related damages caused by intense surface runoff based on optical and SAR remote sensing: Evidence from three case studies in the South of France / Arnaud Cerbelaud in ISPRS Journal of photogrammetry and remote sensing, Vol 182 (December 2021)
PermalinkA novel method based on deep learning, GIS and geomatics software for building a 3D city model from VHR satellite stereo imagery / Massimiliano Pepe in ISPRS International journal of geo-information, vol 10 n° 10 (October 2021)
PermalinkClassification of tree species in a heterogeneous urban environment using object-based ensemble analysis and World View-2 satellite imagery / Simbarashe Jombo in Applied geomatics, vol 13 n° 3 (September 2021)
PermalinkA deep translation (GAN) based change detection network for optical and SAR remote sensing images / Xinghua Li in ISPRS Journal of photogrammetry and remote sensing, vol 179 (September 2021)
PermalinkVehicle detection in very-high-resolution remote sensing images based on an anchor-free detection model with a more precise foveal area / Xungen Li in ISPRS International journal of geo-information, vol 10 n° 8 (August 2021)
PermalinkComparison of classification methods for urban green space extraction using very high resolution worldview-3 imagery / S. Vigneshwaran in Geocarto international, vol 36 n° 13 ([15/07/2021])
PermalinkMask R-CNN-based building extraction from VHR satellite data in operational humanitarian action: An example related to Covid-19 response in Khartoum, Sudan / Dirk Tiede in Transactions in GIS, Vol 25 n° 3 (June 2021)
PermalinkUncertainty management for robust probabilistic change detection from multi-temporal Geoeye-1 imagery / Mahmoud Salah in Applied geomatics, vol 13 n° 2 (June 2021)
PermalinkRotation-invariant feature learning in VHR optical remote sensing images via nested siamese structure with double center loss / Ruoqiao Jiang in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
PermalinkApports des méthodes d'apprentissage profond pour la reconnaissance automatique des modes d'occupation des sols et d'objets par télédétection en milieu tropical / Guillaume Rousset (2021)
Permalink